论文标题

组织病理学图像中有丝分裂领域的概括 - MIDOG挑战

Mitosis domain generalization in histopathology images -- The MIDOG challenge

论文作者

Aubreville, Marc, Stathonikos, Nikolas, Bertram, Christof A., Klopleisch, Robert, ter Hoeve, Natalie, Ciompi, Francesco, Wilm, Frauke, Marzahl, Christian, Donovan, Taryn A., Maier, Andreas, Breen, Jack, Ravikumar, Nishant, Chung, Youjin, Park, Jinah, Nateghi, Ramin, Pourakpour, Fattaneh, Fick, Rutger H. J., Hadj, Saima Ben, Jahanifar, Mostafa, Rajpoot, Nasir, Dexl, Jakob, Wittenberg, Thomas, Kondo, Satoshi, Lafarge, Maxime W., Koelzer, Viktor H., Liang, Jingtang, Wang, Yubo, Long, Xi, Liu, Jingxin, Razavi, Salar, Khademi, April, Yang, Sen, Wang, Xiyue, Veta, Mitko, Breininger, Katharina

论文摘要

已知肿瘤组织中有丝分裂图的密度与肿瘤增殖高度相关,因此是肿瘤分级的重要标志物。已知病理学家对有丝分裂数字的识别会受到强烈的评价者偏见的影响,从而限制了预后价值。最先进的深度学习方法可以支持本评估的专家,但在与培训相比,在不同的临床环境中应用时,已知会严重恶化。基础域移位中的一个决定性组件已被确定为使用不同的整个滑动扫描仪引起的变异性。 MICCAI MIDOG 2021挑战的目的是提出和评估方法来对抗这种域移位并得出扫描仪 - 敏捷有丝分裂检测算法。挑战使用了200例训练组,分别在四个扫描系统上分裂。作为测试集,给出了另外100例在四个扫描系统中分裂的病例,包括两个以前看不见的扫描仪。最好的方法在专家级别执行,获胜算法的F_1得分为0.748(CI95:0.704-0.781)。在本文中,我们评估并比较提交给挑战的方法,并确定有助于更好绩效的方法论因素。

The density of mitotic figures within tumor tissue is known to be highly correlated with tumor proliferation and thus is an important marker in tumor grading. Recognition of mitotic figures by pathologists is known to be subject to a strong inter-rater bias, which limits the prognostic value. State-of-the-art deep learning methods can support the expert in this assessment but are known to strongly deteriorate when applied in a different clinical environment than was used for training. One decisive component in the underlying domain shift has been identified as the variability caused by using different whole slide scanners. The goal of the MICCAI MIDOG 2021 challenge has been to propose and evaluate methods that counter this domain shift and derive scanner-agnostic mitosis detection algorithms. The challenge used a training set of 200 cases, split across four scanning systems. As a test set, an additional 100 cases split across four scanning systems, including two previously unseen scanners, were given. The best approaches performed on an expert level, with the winning algorithm yielding an F_1 score of 0.748 (CI95: 0.704-0.781). In this paper, we evaluate and compare the approaches that were submitted to the challenge and identify methodological factors contributing to better performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源