论文标题

引入框架和决策协议来校准推荐系统

Introducing a Framework and a Decision Protocol to Calibrate Recommender Systems

论文作者

da Silva, Diego Corrêa, Durão, Frederico Araújo

论文摘要

推荐系统使用用户配置文件为目标用户生成带有未知项目的建议列表。尽管传统推荐系统的主要目标是提供最相关的项目,但这种努力无意间会引起抵押品,包括低多样性和不平衡的流派或类别,从而使特定类别组受益。本文提出了一种方法,以创建具有校准流派平衡的推荐列表,避免用户的个人资料兴趣和推荐列表之间的比例不足。校准的建议同时考虑了从用户的喜好和建议列表中提取的类型分布之间的相关性和差异。主要主张是校准可以为提出更公平的建议做出积极贡献。特别是,我们提出了一个新的权衡方程式,该方程式考虑了用户的偏见,以提供寻求用户倾向的建议列表。此外,我们提出了一个概念框架和一个决策协议,以生成校准系统的一千多种组合,以找到最佳组合。我们将我们的方法与使用多个域数据集的最新方法进行了比较,这些方法通过等级和校准指标进行了分析。结果表明,考虑用户偏见的权衡会对精度和公平性产生积极影响,从而产生尊重流派分布的建议列表,并通过决策协议,我们还为每个数据集找到了最佳系统。

Recommender Systems use the user's profile to generate a recommendation list with unknown items to a target user. Although the primary goal of traditional recommendation systems is to deliver the most relevant items, such an effort unintentionally can cause collateral effects including low diversity and unbalanced genres or categories, benefiting particular groups of categories. This paper proposes an approach to create recommendation lists with a calibrated balance of genres, avoiding disproportion between the user's profile interests and the recommendation list. The calibrated recommendations consider concomitantly the relevance and the divergence between the genres distributions extracted from the user's preference and the recommendation list. The main claim is that calibration can contribute positively to generate fairer recommendations. In particular, we propose a new trade-off equation, which considers the users' bias to provide a recommendation list that seeks for the users' tendencies. Moreover, we propose a conceptual framework and a decision protocol to generate more than one thousand combinations of calibrated systems in order to find the best combination. We compare our approach against state-of-the-art approaches using multiple domain datasets, which are analyzed by rank and calibration metrics. The results indicate that the trade-off, which considers the users' bias, produces positive effects on the precision and to the fairness, thus generating recommendation lists that respect the genre distribution and, through the decision protocol, we also found the best system for each dataset.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源