论文标题
无监督的图像到图像翻译,具有生成性先验
Unsupervised Image-to-Image Translation with Generative Prior
论文作者
论文摘要
无监督的图像到图像翻译旨在学习两个视觉域之间的翻译,而没有配对数据。尽管图像翻译模型最近取得了进展,但在复杂的域之间构建映射的视觉差异很大仍然具有挑战性。在这项工作中,我们提出了一种新颖的框架,生成的先前指导的无监督图像到图像翻译(GP-UNIT),以提高翻译算法的整体质量和适用性。我们的关键见解是利用预训练的类条件gan(例如Biggan)的生成剂,以学习各个领域的丰富内容对应。我们提出了一种新颖的粗到精细方案:我们首先在捕获强大的粗级内容表示之前先提炼生成剂,该代表可以在抽象的语义级别上链接对象,基于该对象,基于该对象的精细级别内容特征可以自适应地学习,以获得更准确的多级内容对应关系。广泛的实验证明了我们多功能框架在稳健,高质量和多元化的翻译中的优越性,即使是有挑战性和遥远的域,我们的优越性。
Unsupervised image-to-image translation aims to learn the translation between two visual domains without paired data. Despite the recent progress in image translation models, it remains challenging to build mappings between complex domains with drastic visual discrepancies. In this work, we present a novel framework, Generative Prior-guided UNsupervised Image-to-image Translation (GP-UNIT), to improve the overall quality and applicability of the translation algorithm. Our key insight is to leverage the generative prior from pre-trained class-conditional GANs (e.g., BigGAN) to learn rich content correspondences across various domains. We propose a novel coarse-to-fine scheme: we first distill the generative prior to capture a robust coarse-level content representation that can link objects at an abstract semantic level, based on which fine-level content features are adaptively learned for more accurate multi-level content correspondences. Extensive experiments demonstrate the superiority of our versatile framework over state-of-the-art methods in robust, high-quality and diversified translations, even for challenging and distant domains.