论文标题

通过学习的参数共享发现模棱两可的发现

Equivariance Discovery by Learned Parameter-Sharing

论文作者

Yeh, Raymond A., Hu, Yuan-Ting, Hasegawa-Johnson, Mark, Schwing, Alexander G.

论文摘要

将其作为对深网的归纳偏见的设计是建立有效模型的一种突出方法,例如,卷积神经网络结合了翻译等效性。但是,结合这些归纳偏见需要有关数据的均衡性能的知识,例如,在遇到新域时可能无法使用的数据。为了解决这个问题,我们研究了如何从数据中发现可解释的均值。具体来说,我们将此发现过程提出为在模型的参数共享方案上的优化问题。我们建议使用分区距离来验证恢复的均衡性的准确性。另外,我们从理论上分析了高斯数据的方法,并在研究的发现方案和甲骨文方案之间提供了平方差距。从经验上讲,我们表明该方法恢复了已知的均值,例如排列和变化,数字和空间不变的数据。

Designing equivariance as an inductive bias into deep-nets has been a prominent approach to build effective models, e.g., a convolutional neural network incorporates translation equivariance. However, incorporating these inductive biases requires knowledge about the equivariance properties of the data, which may not be available, e.g., when encountering a new domain. To address this, we study how to discover interpretable equivariances from data. Specifically, we formulate this discovery process as an optimization problem over a model's parameter-sharing schemes. We propose to use the partition distance to empirically quantify the accuracy of the recovered equivariance. Also, we theoretically analyze the method for Gaussian data and provide a bound on the mean squared gap between the studied discovery scheme and the oracle scheme. Empirically, we show that the approach recovers known equivariances, such as permutations and shifts, on sum of numbers and spatially-invariant data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源