论文标题

用于经颅电流刺激的电场分析的准静态近似误差

Quasi-Static Approximation Error of Electric Field Analysis for Transcranial Current Stimulation

论文作者

Gaugain, Gabriel, Quéguiner, Lorette, Bikson, Marom, Sauleau, Ronan, Zhadobov, Maxim, Modolo, Julien, Nikolayev, Denys

论文摘要

目的:通过经颅交流电流刺激(TAC)引起的电场的数值模型目前是预测和理解神经反应的标准程序的一部分。通常应用用于降低计算成本的电场计算的准静态近似。在这里,我们旨在分析和量化近似值的有效性。方法:我们使用解剖学头模型进行了电磁建模研究,并考虑了近似值,假设纯欧姆培养基(即静态配方)或有损耗的介电培养基(准静态配方)。在谐波和脉冲信号的情况下,将结果与麦克斯韦方程的溶液进行了比较。最后,我们分析了电极定位对这些误差的影响。主要结果:我们的发现表明,准静态近似是有效的,并产生低于1%至1.43 MHz的相对误差。在静态情况下引入了最大的误差,在整个被考虑的频谱中,误差超过1%,在10 Hz时大脑中的误差高达20%。我们还强调了考虑组织对脉冲波形的电容作用的特殊重要性,从而防止纯欧姆近似引起的信号失真。在神经元水平上,结果指出了在聚焦点的感觉电场高达22%的差异,从而影响了锥体细胞的触发时间。意义:准静态近似在当前用于TAC的频率范围内保持有效。但是,忽略介电常数(静态公式)引入了谐波和非谐波信号的重大误差。它指出,需要可靠的低频介电数据才能进行准确的TCS数值建模。

Objective: Numerical modeling of electric fields induced by transcranial alternating current stimulation (tACS) is currently a part of the standard procedure to predict and understand neural response. Quasi-static approximation for electric field calculations is generally applied to reduce the computational cost. Here, we aimed to analyze and quantify the validity of the approximation over a broad frequency range. Approach: We performed electromagnetic modeling studies using an anatomical head models and considered approximations assuming either a purely ohmic medium (i.e., static formulation) or a lossy dielectric medium (quasi-static formulation). The results were compared with the solution of Maxwell's equations in the cases of harmonic and pulsed signals. Finally, we analyzed the effect of electrode positioning on these errors. Main Results: Our findings demonstrate that the quasi-static approximation is valid and produces a relative error below 1% up to 1.43 MHz. The largest error is introduced in the static case, where the error is over 1% across the entire considered spectrum and as high as 20% in the brain at 10 Hz. We also highlight the special importance of considering the capacitive effect of tissues for pulsed waveforms, which prevents signal distortion induced by the purely ohmic approximation. At the neuron level, the results point a difference of sense electric field as high as 22% at focusing point, impacting pyramidal cells firing times. Significance: Quasi-static approximation remains valid in the frequency range currently used for tACS. However, neglecting permittivity (static formulation) introduces significant error for both harmonic and non-harmonic signals. It points out that reliable low frequency dielectric data are needed for accurate tCS numerical modeling.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源