论文标题
部分可观测时空混沌系统的无模型预测
FedADMM: A Robust Federated Deep Learning Framework with Adaptivity to System Heterogeneity
论文作者
论文摘要
联合学习(FL)是一个新兴框架,用于通过有限的通信带宽,数据分布中的异质性和计算资源的异质性以及隐私注意事项对边缘设备进行大型数据量的分布式处理。在本文中,我们介绍了一种基于原始偶尔优化的新的FL协议,该协议称为fedadmm。提出的方法利用双变量来应对统计异质性,并通过容忍客户执行的可变工作量来适应系统异质性。 Fedadmm每回合的沟通成本与FedAvg/Prox相同,并通过增强的Lagrangian概括了它们。在数据差异或每轮算法的参与者数量方面,为非convex目标建立了融合证明。我们通过在IID和非IID数据分布之间进行的真实数据集进行了广泛的实验来证明优点。 Fedadmm在沟通效率方面始终胜过所有基线方法,达到规定准确性所需的回合数量最高高达87%。该算法通过使用双重变量有效地适应了异质数据分布,而无需进行超参数调整,并且在大规模系统中其优点更为明显。
Federated Learning (FL) is an emerging framework for distributed processing of large data volumes by edge devices subject to limited communication bandwidths, heterogeneity in data distributions and computational resources, as well as privacy considerations. In this paper, we introduce a new FL protocol termed FedADMM based on primal-dual optimization. The proposed method leverages dual variables to tackle statistical heterogeneity, and accommodates system heterogeneity by tolerating variable amount of work performed by clients. FedADMM maintains identical communication costs per round as FedAvg/Prox, and generalizes them via the augmented Lagrangian. A convergence proof is established for nonconvex objectives, under no restrictions in terms of data dissimilarity or number of participants per round of the algorithm. We demonstrate the merits through extensive experiments on real datasets, under both IID and non-IID data distributions across clients. FedADMM consistently outperforms all baseline methods in terms of communication efficiency, with the number of rounds needed to reach a prescribed accuracy reduced by up to 87%. The algorithm effectively adapts to heterogeneous data distributions through the use of dual variables, without the need for hyperparameter tuning, and its advantages are more pronounced in large-scale systems.