论文标题
物理学是围绕连接多封闭世界中上下文的转换组织的
Physics is organized around transformations connecting contextures in a polycontextural world
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
The rich body of physical theories defines the foundation of our understanding of the world. Its mathematical formulation is based on classical Aristotelian (binary) logic. In the philosophy of science the ambiguities, paradoxes, and the possibility of subjective interpretations of facts have challenged binary logic, leading, among other developments, to Gotthard Günther's theory of polycontexturality (often also termed 'transclassical logic'). Günther's theory explains how observers with subjective perception can become aware of their own subjectivity and provides means to describe contradicting or even paradox observations in a logically sound formalism. Here we summarize the formalism behind Günther's theory and apply it to two well-known examples from physics where different observers operate in distinct and only locally valid logical systems. Using polycontextural logic we show how the emerging awareness of these limitations of logical systems entails the design of mathematical transformations, which then become an integral part of the theory. In our view, this approach offers a novel perspective on the structure of physical theories and, at the same time, emphasizes the relevance of the theory of polycontexturality in modern sciences.