论文标题
三维EULER方程的许多非保守解决方案,其任意初始数据$ C^{1/3-ε} $
Infinitely many non-conservative solutions for the three-dimensional Euler equations with arbitrary initial data in $C^{1/3-ε}$
论文作者
论文摘要
令$ 0 <β<\barβ<1/3 $。我们在$ c^β_{x,t} $中无限地构建许多分布解决方案,以在$ c^{\barβ} $中给定的初始数据$中的三维欧拉方程。我们还表明,对$ t> 1 $的能源增加的控制权有限。
Let $0<β<\barβ<1/3$. We construct infinitely many distributional solutions in $C^β_{x,t}$ to the three-dimensional Euler equations that do not conserve the energy, for a given initial data in $C^{\barβ}$. We also show that there is some limited control on the increase in the energy for $t>1$.