论文标题
来自非高斯非均匀时间序列观察的二元空间随机场重建
Binary Spatial Random Field Reconstruction from Non-Gaussian Inhomogeneous Time-series Observations
论文作者
论文摘要
我们开发了一个新的模型,用于二元评估空间现象的空间随机场重建。在我们的模型中,传感器被部署在大型地理区域的无线传感器网络中。每个传感器都测量一个取决于空间现象的非高斯不均匀的时间过程。采用了两种类型的传感器:一个在特定时间点收集点观测,而另一个传感器则在时间间隔内收集积分观察。随后,传感器将这些时间序列的观测传输到融合中心(FC),FC从这些观察结果中渗透了空间现象。我们表明,由此产生的后验预测分布是棘手的,并开发了可进行推断的两步过程。首先,我们开发了对时间序列观测值进行近似似然比测试的算法,从而将它们压缩到一个点传感器和积分传感器的单个位。其次,一旦将压缩的观测值传输到FC,我们就会利用空间最佳线性无偏估计器(S-Blue)在任何所需的空间位置重建二进制空间随机场。使用模拟研究了所提出的方法的性能。我们进一步说明了使用来自新加坡国家环境局(NEA)的天气数据集的效果,包括温度和相对湿度在内。
We develop a new model for spatial random field reconstruction of a binary-valued spatial phenomenon. In our model, sensors are deployed in a wireless sensor network across a large geographical region. Each sensor measures a non-Gaussian inhomogeneous temporal process which depends on the spatial phenomenon. Two types of sensors are employed: one collects point observations at specific time points, while the other collects integral observations over time intervals. Subsequently, the sensors transmit these time-series observations to a Fusion Center (FC), and the FC infers the spatial phenomenon from these observations. We show that the resulting posterior predictive distribution is intractable and develop a tractable two-step procedure to perform inference. Firstly, we develop algorithms to perform approximate Likelihood Ratio Tests on the time-series observations, compressing them to a single bit for both point sensors and integral sensors. Secondly, once the compressed observations are transmitted to the FC, we utilize a Spatial Best Linear Unbiased Estimator (S-BLUE) to reconstruct the binary spatial random field at any desired spatial location. The performance of the proposed approach is studied using simulation. We further illustrate the effectiveness of our method using a weather dataset from the National Environment Agency (NEA) of Singapore with fields including temperature and relative humidity.