论文标题
域适应时间序列分类以减轻协变量偏移
Domain Adaptation for Time-Series Classification to Mitigate Covariate Shift
论文作者
论文摘要
当机器学习模型将其应用于与最初训练的数据相似但不同的域中的数据时,它的性能会降低。为了减轻此域移位问题,域适应性(DA)技术搜索了最佳转换,该转换将(当前)输入数据从源域转换为目标域,以学习降低域差异的域不变表示。本文根据两个步骤提出了一个新颖的监督DA。首先,我们从几个样本中搜索从源到目标域的最佳类依赖性转换。我们考虑了最佳的传输方法,例如地球搬运工的距离,凹痕传输和相关对准。其次,我们使用嵌入相似技术在推理时选择相应的转换。我们使用相关指标和高阶矩匹配技术。我们对具有域移位的时间序列数据集进行了广泛的评估,包括模拟和各种在线手写数据集,以演示性能。
The performance of a machine learning model degrades when it is applied to data from a similar but different domain than the data it has initially been trained on. To mitigate this domain shift problem, domain adaptation (DA) techniques search for an optimal transformation that converts the (current) input data from a source domain to a target domain to learn a domain-invariant representation that reduces domain discrepancy. This paper proposes a novel supervised DA based on two steps. First, we search for an optimal class-dependent transformation from the source to the target domain from a few samples. We consider optimal transport methods such as the earth mover's distance, Sinkhorn transport and correlation alignment. Second, we use embedding similarity techniques to select the corresponding transformation at inference. We use correlation metrics and higher-order moment matching techniques. We conduct an extensive evaluation on time-series datasets with domain shift including simulated and various online handwriting datasets to demonstrate the performance.