论文标题
PSTR:端到端的一步人搜索变压器
PSTR: End-to-End One-Step Person Search With Transformers
论文作者
论文摘要
我们提出了一个新颖的单步变压器搜索框架PSTR,该框架在单个体系结构中共同执行人检测和重新识别(RE-ID)。 PSTR包括一个人搜索特异性(PSS)模块,该模块包含用于人检测的检测编码器以及对人员重新ID的歧视性重新解码器。歧视性重新ID解码器使用共享解码器进行多层监督方案,用于判别性重新ID特征学习,还包括一个零件注意力块来编码一个人之间不同部分之间的关系。我们进一步介绍了一个简单的多尺度方案,以在不同尺度上支持跨人员实例的重新ID。 PSTR共同实现了对象级识别(检测)和实例级匹配(RE-ID)的不同目标。据我们所知,我们是第一个提出端到端一步的基于变压器的人搜索框架的人。实验在两个流行的基准上进行:Cuhk-Sysu和Prw。我们广泛的消融揭示了拟议捐款的优点。此外,拟议的PSTR在两个基准测试中设定了新的最新技术。在具有挑战性的PRW基准中,PSTR的平均平均精度(MAP)得分为56.5%。源代码可在\ url {https://github.com/jialecao001/pstr}中获得。
We propose a novel one-step transformer-based person search framework, PSTR, that jointly performs person detection and re-identification (re-id) in a single architecture. PSTR comprises a person search-specialized (PSS) module that contains a detection encoder-decoder for person detection along with a discriminative re-id decoder for person re-id. The discriminative re-id decoder utilizes a multi-level supervision scheme with a shared decoder for discriminative re-id feature learning and also comprises a part attention block to encode relationship between different parts of a person. We further introduce a simple multi-scale scheme to support re-id across person instances at different scales. PSTR jointly achieves the diverse objectives of object-level recognition (detection) and instance-level matching (re-id). To the best of our knowledge, we are the first to propose an end-to-end one-step transformer-based person search framework. Experiments are performed on two popular benchmarks: CUHK-SYSU and PRW. Our extensive ablations reveal the merits of the proposed contributions. Further, the proposed PSTR sets a new state-of-the-art on both benchmarks. On the challenging PRW benchmark, PSTR achieves a mean average precision (mAP) score of 56.5%. The source code is available at \url{https://github.com/JialeCao001/PSTR}.