论文标题
实时深度学习卫星姿势估计低功率边缘TPU
Deep Learning for Real Time Satellite Pose Estimation on Low Power Edge TPU
论文作者
论文摘要
对不合作空间居民对象的姿势估计是近距离操作中自治的关键资产。在这种情况下,单眼相机是一个有价值的解决方案,因为它们的系统要求低。但是,关联的图像处理算法要么在实时实现实时实现的计算上太昂贵,要么准确地计算不足。在本文中,我们提出了利用神经网络体系结构的姿势估计软件,可以将其缩放到不同的准确性延迟权衡。我们设计的管道将与边缘张量处理单元兼容,以显示功率机学习加速器如何在空间中实现人工智能开发。在基准航天器姿势估计数据集和有意开发的Cosmo Photorealistic数据集上对神经网络进行了测试,该数据集描绘了各种随机姿势和可访问的太阳能电池板方向的Cosmo-Skymed卫星。我们体系结构的最轻版本可在两个数据集上实现最新的精度,但在网络复杂性的一小部分中,每秒以每秒7.7帧的速度运行,在珊瑚开发板中,仅消耗2.2W。
Pose estimation of an uncooperative space resident object is a key asset towards autonomy in close proximity operations. In this context monocular cameras are a valuable solution because of their low system requirements. However, the associated image processing algorithms are either too computationally expensive for real time on-board implementation, or not enough accurate. In this paper we propose a pose estimation software exploiting neural network architectures which can be scaled to different accuracy-latency trade-offs. We designed our pipeline to be compatible with Edge Tensor Processing Units to show how low power machine learning accelerators could enable Artificial Intelligence exploitation in space. The neural networks were tested both on the benchmark Spacecraft Pose Estimation Dataset, and on the purposely developed Cosmo Photorealistic Dataset, which depicts a COSMO-SkyMed satellite in a variety of random poses and steerable solar panels orientations. The lightest version of our architecture achieves state-of-the-art accuracy on both datasets but at a fraction of networks complexity, running at 7.7 frames per second on a Coral Dev Board Mini consuming just 2.2W.