论文标题

建议系统中的单发嵌入维度搜索

Single-shot Embedding Dimension Search in Recommender System

论文作者

Qu, Liang, Ye, Yonghong, Tang, Ningzhi, Zhang, Lixin, Shi, Yuhui, Yin, Hongzhi

论文摘要

作为大多数现代深度推荐系统的关键组成部分,功能嵌入地图高维稀疏的用户/项目功能中嵌入低维密度嵌入中。但是,这些嵌入通常被分配一个统一维度,该维度遇到了以下问题:(1)高内存使用和计算成本。 (2)由于较低的维度分配而引起的次优表现。为了减轻上述问题,一些工作将重点放在自动化的嵌入维度搜索上,以将其作为超参数优化或嵌入修剪问题。但是,他们要么需要精心设计的搜索空间来进行超参数,要么需要耗时的优化程序。在本文中,我们提出了一种称为SSEDS的单发嵌入尺寸搜索方法,该方法可以通过单发嵌入修剪操作为每个特征字段有效分配维度,同时保持模型的建议精度。具体而言,它引入了一个标准,用于识别每个特征字段每个嵌入维度的重要性。结果,SSED可以通过基于相应的维度重要性排名和预定义的参数预算明确降低冗余嵌入尺寸来自动获取混合维度嵌入。此外,所提出的SSED是模型不合时宜的,这意味着它可以集成到不同的基本建议模型中。广泛的离线实验是在两个广泛使用的公共数据集上进行CTR预测任务的,结果表明,即使SSEDS降低了90 \%的参数,SSED仍然可以实现强大的建议性能。此外,SSEDS还部署在微信订阅平台上,以供实践推荐服务。为期7天的在线A/B测试结果表明,SSED可以显着提高在线推荐模型的性能。

As a crucial component of most modern deep recommender systems, feature embedding maps high-dimensional sparse user/item features into low-dimensional dense embeddings. However, these embeddings are usually assigned a unified dimension, which suffers from the following issues: (1) high memory usage and computation cost. (2) sub-optimal performance due to inferior dimension assignments. In order to alleviate the above issues, some works focus on automated embedding dimension search by formulating it as hyper-parameter optimization or embedding pruning problems. However, they either require well-designed search space for hyperparameters or need time-consuming optimization procedures. In this paper, we propose a Single-Shot Embedding Dimension Search method, called SSEDS, which can efficiently assign dimensions for each feature field via a single-shot embedding pruning operation while maintaining the recommendation accuracy of the model. Specifically, it introduces a criterion for identifying the importance of each embedding dimension for each feature field. As a result, SSEDS could automatically obtain mixed-dimensional embeddings by explicitly reducing redundant embedding dimensions based on the corresponding dimension importance ranking and the predefined parameter budget. Furthermore, the proposed SSEDS is model-agnostic, meaning that it could be integrated into different base recommendation models. The extensive offline experiments are conducted on two widely used public datasets for CTR prediction tasks, and the results demonstrate that SSEDS can still achieve strong recommendation performance even if it has reduced 90\% parameters. Moreover, SSEDS has also been deployed on the WeChat Subscription platform for practical recommendation services. The 7-day online A/B test results show that SSEDS can significantly improve the performance of the online recommendation model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源