论文标题

低剂量CT通过正式内部结构变压器通过

Low-Dose CT Denoising via Sinogram Inner-Structure Transformer

论文作者

Yang, Liutao, Li, Zhongnian, Ge, Rongjun, Zhao, Junyong, Si, Haipeng, Zhang, Daoqiang

论文摘要

低剂量计算机断层扫描(LDCT)技术减少了对人体的辐射危害,现在正在引起对医学成像领域的兴趣。由于图像质量被低剂量辐射降解,LDCT检查需要专门的重建方法或降解算法。但是,大多数最新有效的方法忽略了原始投影数据(Sinogram)的内部结构,从而限制了它们的降解能力。正弦图的内结构代表了辛克图域中数据的特殊特征。通过在降解同时保持这种结构,可以显然限制噪声。因此,我们提出了一个LDCT denoing网络,即辛克图内结构变压器(SIST)通过利用正式域中的内结构来减少噪声。具体而言,我们研究了辛克图的CT成像机制和统计特征,以设计正式的内部结构损失,包括恢复高质量CT图像的全局和局部内结构。此外,我们提出了一个曲变压器模块,以更好地提取正弦图。使用自我发挥机制的变压器架构可以利用不同视图角度的投影之间的相互关系,从而在Sinogram DeNoising方面取得了出色的性能。此外,为了提高图像域中的性能,我们提出了图像重建模块以互补的官方图和图像域中互补。

Low-Dose Computed Tomography (LDCT) technique, which reduces the radiation harm to human bodies, is now attracting increasing interest in the medical imaging field. As the image quality is degraded by low dose radiation, LDCT exams require specialized reconstruction methods or denoising algorithms. However, most of the recent effective methods overlook the inner-structure of the original projection data (sinogram) which limits their denoising ability. The inner-structure of the sinogram represents special characteristics of the data in the sinogram domain. By maintaining this structure while denoising, the noise can be obviously restrained. Therefore, we propose an LDCT denoising network namely Sinogram Inner-Structure Transformer (SIST) to reduce the noise by utilizing the inner-structure in the sinogram domain. Specifically, we study the CT imaging mechanism and statistical characteristics of sinogram to design the sinogram inner-structure loss including the global and local inner-structure for restoring high-quality CT images. Besides, we propose a sinogram transformer module to better extract sinogram features. The transformer architecture using a self-attention mechanism can exploit interrelations between projections of different view angles, which achieves an outstanding performance in sinogram denoising. Furthermore, in order to improve the performance in the image domain, we propose the image reconstruction module to complementarily denoise both in the sinogram and image domain.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源