论文标题

通过统计和ML方法从$α$诱导的音乐探测器中对事件进行分类

Classification of events from $α$-induced reactions in the MUSIC detector via statistical and ML methods

论文作者

Raghavan, Krishnan, Avila, Melina L., Balaprakash, Prasanna, Jayatissa, Heshani, Santiago-Gonzalez, Daniel

论文摘要

多采样离子化室(音乐)检测器通常用于测量与核天体物理学,融合研究和其他应用相关的核反应横切。从一个实验科学家中产生的音乐数据中,科学家仔细地提取了$ 10^3 $感兴趣的订单,大约$ 10^{9} $总事件,每个事件都可以由18维矢量代表。但是,标准数据分类过程基于专家驱动的,手动密集的数据分析技术,这些技术需要几个月才能识别模式并从收集的数据中对相关事件进行分类。为了解决这个问题,我们提出了一种通过组合统计和机器学习方法来分类的方法,该方法是由特定$α$诱导的反应进行分类,而统计和机器学习方法相对于标准技术,该方法需要从域科学家那里进行明显较少的输入。 我们将新方法应用于两个实验数据集,并将我们的结果与使用传统方法获得的结果进行了比较。除少数例外,我们的方法分类的事件数量在$ \ pm20 \%$之内同意使用传统方法获得的结果。借助当前的方法,这是音乐数据的第一个此类方法,我们为使用音乐探测器从实验中自动提取了感兴趣的物理事件的基础。

The Multi-Sampling Ionization Chamber (MUSIC) detector is typically used to measure nuclear reaction cross sections relevant for nuclear astrophysics, fusion studies, and other applications. From the MUSIC data produced in one experiment scientists carefully extract an order of $10^3$ events of interest from about $10^{9}$ total events, where each event can be represented by an 18-dimensional vector. However, the standard data classification process is based on expert-driven, manually intensive data analysis techniques that require several months to identify patterns and classify the relevant events from the collected data. To address this issue, we present a method for the classification of events originating from specific $α$-induced reactions by combining statistical and machine learning methods that require significantly less input from the domain scientist, relative to the standard technique. We applied the new method to two experimental data sets and compared our results with those obtained using traditional methods. With few exceptions, the number of events classified by our method agrees within $\pm20\%$ with the results obtained using traditional methods. With the present method, which is the first of its kind for the MUSIC data, we have established the foundation for the automated extraction of physical events of interest from experiments using the MUSIC detector.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源