论文标题

Autocor:TKA术侧膝盖X射线上的自动condolar偏移比率计算器

AutoCOR: Autonomous Condylar Offset Ratio Calculator on TKA-Postoperative Lateral Knee X-ray

论文作者

Cakmak, Gulsade Rabia, Hamamci, Ibrahim Ethem, Yilmaz, Mehmet Kursat, Alhajj, Reda, Azboy, Ibrahim, Ozdemir, Mehmet Kemal

论文摘要

术后运动范围是表明总膝关节置换术(TKA)结果的关键因素之一。尽管文献中有争议的膝关节屈曲范围与后孔侧偏移(PCO)之间的相关性保持在TKA评估中的重要性。由于对PCO测量的局限性,引入了两个新的参数,后孔的偏移率(PCOR)和前孔偏移率(ACOR)。如今,骨科医生手动完成了普通侧面X光片上PCOR和ACOR的计算。在这方面,我们开发了一种软件Autocor,以使用无监督的机器学习算法(K-Means群集)和数字图像处理技术来自动计算PCOR和ACOR。该软件自动对象能够检测股骨轴的前/后边缘点和股骨轴的前/后皮层,在真实的术后传统X光片上。为了测试该算法,使用了来自伊斯坦布尔Kosuyolu Medipol医院数据库的50个术后真实的侧面X光片(32例患者)。在软件结果中,平均PCOR为0.984(SD 0.235),地面真相值为0.972(SD 0.164)。它显示了软件和地面真实值之间的密切和显着的相关性(Pearson r = 0.845 P <0.0001)。在软件结果中,平均ACOR为0.107(SD 0.092),地面真相值为0.107(SD 0.070)。它显示了软件和地面真实价值之间的中等且显着的相关性(Spearman的Rs = 0.519 P = 0.0001412)。我们建议Autocor是可以在临床实践中使用的有用工具。

The postoperative range of motion is one of the crucial factors indicating the outcome of Total Knee Arthroplasty (TKA). Although the correlation between range of knee flexion and posterior condylar offset (PCO) is controversial in the literature, PCO maintains its importance on evaluation of TKA. Due to limitations on PCO measurement, two novel parameters, posterior condylar offset ratio (PCOR) and anterior condylar offset ratio (ACOR), were introduced. Nowadays, the calculation of PCOR and ACOR on plain lateral radiographs is done manually by orthopedic surgeons. In this regard, we developed a software, AutoCOR, to calculate PCOR and ACOR autonomously, utilizing unsupervised machine learning algorithm (k-means clustering) and digital image processing techniques. The software AutoCOR is capable of detecting the anterior/posterior edge points and anterior/posterior cortex of the femoral shaft on true postoperative lateral conventional radiographs. To test the algorithm, 50 postoperative true lateral radiographs from Istanbul Kosuyolu Medipol Hospital Database were used (32 patients). The mean PCOR was 0.984 (SD 0.235) in software results and 0.972 (SD 0.164) in ground truth values. It shows strong and significant correlation between software and ground truth values (Pearson r=0.845 p<0.0001). The mean ACOR was 0.107 (SD 0.092) in software results and 0.107 (SD 0.070) in ground truth values. It shows moderate and significant correlation between software and ground truth values (Spearman's rs=0.519 p=0.0001412). We suggest that AutoCOR is a useful tool that can be used in clinical practice.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源