论文标题

随机量子电路的有效场理论

Effective field theory of random quantum circuits

论文作者

Liao, Yunxiang, Galitski, Victor

论文摘要

量子电路已被广泛用作模拟通用量子多体系统的平台。特别是,随机量子电路提供了一种探测多体量子混乱和成真性的通用特征的方法。在嘈杂的中间量子量子(NISQ)设备中,已经在实验中证明了一些此类特征。在理论方面,已经研究了随机量子电路的性能,并且对于某些特定系统,量子混乱的标志 - 通用的Wigner-Dyson级统计数据。这项工作为大量随机量子电路发展了有效的现场理论。该理论具有副本Sigma模型的形式,类似于无序系统中低能的扩散方法。该方法用于明确得出大型随机电路家族的通用随机矩阵行为。特别是,我们通过Chan,de Luca和Chalker的Brickwork Circul Model的Wigner-Dyson光谱统计[Phys。 Rev. X 8,041019(2018)]并在同一计算中显示其各种排列和高维概括可保留通用级别的统计数据。最后,我们使用副本Sigma模型框架来重新启动Weingarten演算,这是一种评估矩阵元素多项式相对于HAAR测量的多项式积分的方法,并且在量子电路的研究中有许多应用。此处得出的有效场理论既提供了一种定量表征随机浮雕系统的量子动力学(例如,计算操作员和纠缠扩散)的方法,也提供了理解这些系统中量子混乱和热化背后的一般基本机制的途径。

Quantum circuits have been widely used as a platform to simulate generic quantum many-body systems. In particular, random quantum circuits provide a means to probe universal features of many-body quantum chaos and ergodicity. Some such features have already been experimentally demonstrated in the noisy intermediate-scale quantum (NISQ) devices. On the theory side, properties of random quantum circuits have been studied on a case-by-case basis and for certain specific systems, a hallmark of quantum chaos - universal Wigner-Dyson level statistics - has been derived. This work develops an effective field theory for a large class of random quantum circuits. The theory has the form of a replica sigma model and is similar to the low-energy approach to diffusion in disordered systems. The method is used to explicitly derive universal random matrix behavior of a large family of random circuits. In particular, we rederive Wigner-Dyson spectral statistics of the brickwork circuit model by Chan, De Luca, and Chalker [Phys. Rev. X 8, 041019 (2018)] and show within the same calculation that its various permutations and higher-dimensional generalizations preserve the universal level statistics. Finally, we use the replica sigma model framework to rederive the Weingarten calculus, which is a method to evaluate integrals of polynomials of matrix elements with respect to the Haar measure over compact groups and has many applications in the studies of quantum circuits. The effective field theory, derived here, provides both a method to quantitatively characterize quantum dynamics of random Floquet systems (e.g., calculating operator and entanglement spreading) and also path to understanding the general fundamental mechanism behind quantum chaos and thermalization in these systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源