论文标题
摩擦谷物的统计物理学:Edwards统计的一些简单应用
Statistical physics of frictional grains: some simple applications of Edwards statistics
论文作者
论文摘要
颗粒物像沙一样由大量相互作用的谷物组成,因此有望接受统计物理治疗。然而,谷物的摩擦特性使颗粒物的统计物理学与原子或分子系统的平衡统计物理学显着不同。我们在简单的模型上在这里说明了三十多年前爱德华兹和同事引入的统计物理学的一些关键概念,以描述动摇的颗粒状桩。令人惊讶的是,在高效温度(即强烈摇动)下观察到的这种摩擦系统的性质可能与平衡系统的某些低温特性共享一些类比。例如,在谐波电位强烈摇动下,非相互作用的摩擦晶粒的有效比热在高温极限下为零。作为第二个例子,由弹簧连接的一系列摩擦晶粒在无限有效温度下表现出临界点,与在局部相互作用的存在下,在一维平衡系统中通常发现的零温度临界点。
Granular matter like sand is composed of a large number of interacting grains, and is thus expected to be amenable to a statistical physics treatment. Yet, the frictional properties of grains make the statistical physics of granular matter significantly different from the equilibrium statistical physics of atomic or molecular systems. We illustrate here on simple models some of the key concepts of the statistical physics introduced by Edwards and coworkers more than thirty years ago to describe shaken granular piles. Quite surprisingly, properties of such frictional systems observed at high effective temperature (i.e., strong shaking) may share some analogies with some low temperature properties of equilibrium systems. For instance, the effective specific heat of non-interacting frictional grains under strong shaking in a harmonic potential goes to zero in the high temperature limit. As a second example, a chain of frictional grains linked by springs exhibits a critical point at infinite effective temperature, at odds with the zero-temperature critical point generically found in one-dimensional equilibrium systems in the presence of local interactions.