论文标题
奥斯卡:基于内容的基于内容的射线照相检索系统
OSCARS: An Outlier-Sensitive Content-Based Radiography Retrieval System
论文作者
论文摘要
提高嘈杂数据集的检索相关性是对医疗域中大规模清洁数据集进行策划的新兴需求。尽管可以将现有方法应用于班级检索(又名阶层),但它们无法区分同一类(又称类内部)中相似性的粒度。该问题在医疗外部数据集上加剧了,在训练期间,同一类嘈杂的样本得到了同样的治疗。我们的目标是确定细粒度检索的阶层/间相似性。为了实现这一目标,我们提出了一个基于异常敏感的基于内容的放射科检索系统(奥斯卡),由两个步骤组成。首先,我们以无监督的方式在干净的内部数据集上训练异常检测器。然后,我们使用训练有素的检测器在外部数据集上生成异常得分,该数据集将使用其分布来键入阶层内变化。其次,我们提出了一个四倍体(a,p,忍者,ninter)采样策略,其中从同一等级的bin中取样了类内部的底片,除了bin锚A型A属于A的同一类,而Niner则是从层间随机取样的。我们建议一个加权度量学习目标,以平衡课内和类间特征学习。我们在两个代表性的公共射线照相数据集中进行了实验。实验显示了我们方法的有效性。培训和评估代码可以在https://github.com/xiaoyuangue/oscars中找到。
Improving the retrieval relevance on noisy datasets is an emerging need for the curation of a large-scale clean dataset in the medical domain. While existing methods can be applied for class-wise retrieval (aka. inter-class), they cannot distinguish the granularity of likeness within the same class (aka. intra-class). The problem is exacerbated on medical external datasets, where noisy samples of the same class are treated equally during training. Our goal is to identify both intra/inter-class similarities for fine-grained retrieval. To achieve this, we propose an Outlier-Sensitive Content-based rAdiologhy Retrieval System (OSCARS), consisting of two steps. First, we train an outlier detector on a clean internal dataset in an unsupervised manner. Then we use the trained detector to generate the anomaly scores on the external dataset, whose distribution will be used to bin intra-class variations. Second, we propose a quadruplet (a, p, nintra, ninter) sampling strategy, where intra-class negatives nintra are sampled from bins of the same class other than the bin anchor a belongs to, while niner are randomly sampled from inter-classes. We suggest a weighted metric learning objective to balance the intra and inter-class feature learning. We experimented on two representative public radiography datasets. Experiments show the effectiveness of our approach. The training and evaluation code can be found in https://github.com/XiaoyuanGuo/oscars.