论文标题
大统一与普朗克量表:$ \ mathit {so}(10)$辐射对称性的示例
Grand unification and the Planck scale: An $\mathit{SO}(10)$ example of radiative symmetry breaking
论文作者
论文摘要
量规耦合和费米子表示的大统一仍然是一个吸引人的建议,可以解释标准模型的看似巧合结构。但是,要实现低能的标准模型,统一的对称组必须以正确的方式被合适的标量电势部分打破。标量电势包含几个耦合,其值决定了全局最小值的残差对称性。相应的对称性模式中的某些(可能还有许多)与标准模型不相容,因此不可能。在这里,我们启动了辐射对称性破裂的系统研究,从而限制了标量耦合的可行初始条件,例如,在普朗克尺度上。我们将这些新约束与可允许的标量潜力与量规延迟部门的众所周知约束结合在一起,成为一个普遍的蓝图,该蓝图雕刻了任何量子重力基础理论的可行有效场理论空间。我们体现了蓝图在非苏皮米对称$ \ mathit {so}(10)$ ut中包含$ \ mathbf {16} _h $ - 和$ \ mathbf {45} _H $ -Dimensional-Dimensional scalar的表示。我们明确地表明,成功辐射对称性对正确的亚组的需求显着限制了基本的显微动力学。不可能的辐射最小值的存在甚至可以完全排除特定的断裂链:在$ \ mathit {so}(10)$示例中,pati-salam breaking链无法实现,因为各自的最小值从来都不是最深的。
Grand unification of gauge couplings and fermionic representations remains an appealing proposal to explain the seemingly coincidental structure of the Standard Model. However, to realise the Standard Model at low energies, the unified symmetry group has to be partially broken by a suitable scalar potential in just the right way. The scalar potential contains several couplings, whose values dictate the residual symmetry at a global minimum. Some (and possibly many) of the corresponding symmetry-breaking patterns are incompatible with the Standard Model and therefore non-admissible. Here, we initiate a systematic study of radiative symmetry breaking to thereby constrain viable initial conditions for the scalar couplings, for instance, at the Planck scale. We combine these new constraints on an admissible scalar potential with well-known constraints in the gauge-Yukawa sector into a general blueprint that carves out the viable effective-field-theory parameter space of any underlying theory of quantum gravity. We exemplify the constraining power of our blueprint within a non-supersymmetric $\mathit{SO}(10)$ GUT containing a $\mathbf{16}_H$- and a $\mathbf{45}_H$-dimensional scalar representation. We explicitly demonstrate that the requirement of successful radiative symmetry breaking to the correct subgroups significantly constraints the underlying microscopic dynamics. The presence of non-admissible radiative minima can even entirely exclude specific breaking chains: In the $\mathit{SO}(10)$ example, Pati-Salam breaking chains cannot be realised since the respective minima are never the deepest ones.