论文标题
Snowmass2021-白皮书,能量峰对撞机现象学的影响:顶级夸克质量确定及以后
Snowmass2021 - White Paper, Implications of Energy Peak for Collider Phenomenology: Top Quark Mass Determination and Beyond
论文作者
论文摘要
我们首先回顾了十年来的广泛的撞机物理研究计划,称为能量峰。我们考虑由实验室框架中无质量粒子的能量分布,这是由重粒子的两体衰变产生的,产生了非铝的能量分布,其增强分布是任意的。值得注意的是,该儿童粒子能量分布的峰位置与其在父级的其余框架中的单值能量相同,这是父质量的函数和其他衰减产物的函数。我们总结了对其他类型的衰减和对BSM的各种应用的概括。能量峰的想法还可以通过底部夸克的能量从其衰减中的能量来测量顶部的夸克,基于“父母 - 振动不变性”,这对顶级夸克的生产机制的细节不太敏感(参见大多数其他方法,都假定纯粹的最高质量,因此,不可能在其中造成不可能的生产,因此可能会贡献一个可能的bs,包括可能的bsm,包括bsm,包括bsm。沿着这条线的原始建议是简单地将$ b $ jet的能源用作底部夸克能量的很好的近似值。该方法已由CMS协作成功实施。但是,$ b $ -JET Energy-Peak方法受到喷射能量表(JES)的不确定性折磨。幸运的是,通过使用$ b $ jet中包含的$ b $ hadron的衰减长度作为底部夸克能量的代理,可以避免这种缺点。一个有趣的建议是,然后适当地索引上述两个想法,从而确定了顶级夸克质量的“两全其美”的确定,即基于$ b $ $ $ $ - $ hadron的衰减长度的测量,但通过能量峰概念提高了,但通过jesion-jesion-jesion不确定性和最大程度地独立于Quark Production模型。我们在这里总结了这种分析的结果,该分析将出现在即将发表的论文中。
We first review the decade-old, broad collider physics research program dubbed energy-peaks. We consider the energy distribution of a massless particle in the lab frame arising from the two-body decay of a heavy particle produced unpolarized, whose boost distribution is arbitrary. Remarkably, the location of the peak of this child particle's energy distribution is identical to its single-valued energy in the rest frame of the parent, which is a function of the parent's mass and that of the other decay product. We summarize generalizations to other types of decay and a variety of applications to BSM. The energy-peak idea can also furnish a measurement of the top quark via the energy of the bottom quark from its decay, which, based on the "parent-boost-invariance," is less sensitive to details of the production mechanism of the top quark (cf.~most other methods assume purely SM production of the top quarks, hence are subject to uncertainties therein, including a possible BSM contribution). The original proposal along this line was to simply use the $b$-jet energy as a very good approximation to the bottom quark energy. This method has been successfully implemented by the CMS collaboration. However, the $b$-jet energy-peak method is afflicted by the jet-energy scale (JES) uncertainty. Fortunately, this drawback can be circumvented by using the decay length of a $B$-hadron contained in the $b$-jet as a proxy for the bottom quark energy. An interesting proposal is to then appropriately dovetail the above two ideas resulting in a "best of both worlds" determination of the top quark mass, i.e., based on a measurement of the $B$-hadron decay length, but improved by the energy-peak concept: this would be free of JES uncertainty and largely independent of the top quark production model. We summarize here the results of such an analysis which is to appear in a forthcoming paper.