论文标题
星形星系中分子气的运动学,带有大规模电离流出
Kinematics of molecular gas in star-forming galaxies with large-scale ionised outflows
论文作者
论文摘要
我们使用Alma CO(1-0)的观测值以〜1KPC的分辨率来研究分子气体的分子气体的运动学,该样品被确定为托管大规模流出的电离气体的大规模流出。我们以Hogarth等人为基础。 (2021; H21),其中我们发现分子气体比在托管风中的星系中更集中于中心,而不是对照对象。我们使用运动学成分的多种组合进行完整的三维运动学建模,从而使我们能够推断出这些对象是否在其分子气体结构中具有任何相似之处。我们使用建模来查明每个星系的运动学中心,以解释其次要和大轴位置速度图(PVD)。从PVD中,我们发现星系中的大部分分子气体是动态冷的,可以追溯到我们的对称,旋转主导的模型预测的旋转曲线,但较小的通量不对称。最值得注意的是,我们在物体的一个子集中发现了径向气体运动的证据,这些证据表明,在其次要轴PVD中,它们通常与星系平面相关的气流相关。在我们最高的S/N对象中,我们在运动学模型中包括双对称径向流,并发现(通过贝叶斯信息标准)强烈倾向于径向气体运动的存在。这可能提供一种机制,通过将分子气和恒星形成集中浓缩,从而使大规模电离气体风的发射。但是,在我们样本的其余部分中,我们没有观察到径向驱动气体的证据,再次强调了可能为这些物体中流出提供动力的物理过程的多样性,如H21中最初指出的那样。
We investigate the kinematics of the molecular gas in a sample of seven edge-on (i>60°) galaxies identified as hosting large-scale outflows of ionised gas, using ALMA CO(1-0) observations at ~ 1kpc resolution. We build on Hogarth et al. (2021; H21), where we find that molecular gas is more centrally concentrated in galaxies which host winds than in control objects. We perform full 3-dimensional kinematic modelling with multiple combinations of kinematic components, allowing us to infer whether these objects share any similarities in their molecular gas structure. We use modelling to pinpoint the kinematic centre of each galaxy, in order to interpret their minor- and major-axis position velocity diagrams (PVDs). From the PVDs, we find that the bulk of the molecular gas in our galaxies is dynamically cold, tracing the rotation curves predicted by our symmetric, rotation-dominated models, but with minor flux asymmetries. Most notably, we find evidence of radial gas motion in a subset of our objects, which demonstrate a characteristic "twisting" in their minor-axis PVDs generally associated with gas flow along the plane of a galaxy. In our highest S/N object, we include bi-symmetric radial flow in our kinematic model, and find (via the Bayesian Information Criterion) that the presence of radial gas motion is strongly favoured. This may provide one mechanism by which molecular gas and star formation are centrally concentrated, enabling the launch of massive ionised gas winds. However, in the remainder of our sample, we do not observe evidence that gas is being driven radially, once again emphasising the variety of physical processes that may be powering the outflows in these objects, as originally noted in H21.