论文标题

基于抽样的快速梯度重新缩放方法,用于高度可转移的对抗攻击

Sampling-based Fast Gradient Rescaling Method for Highly Transferable Adversarial Attacks

论文作者

Han, Xu, Liu, Anmin, Xiong, Yifeng, Fan, Yanbo, He, Kun

论文摘要

深层神经网络已显示出非常容易受到通过在良性输入中添加人类侵蚀性扰动而精心策划的对抗性例子。在在白色盒子设置中取得了令人印象深刻的攻击成功率后,更多的重点转移到了黑框攻击上。无论哪种情况,基于梯度的通用方法通常都使用$符号$函数在过程结束时生成扰动。但是,只有少数作品注意$ sign $函数的限制。原始梯度与生成的噪声之间的偏差可能导致梯度更新估计和对抗性转移性的次优解决方案,这对于黑盒子攻击至关重要。为了解决这个问题,我们提出了一种基于抽样的快速梯度再生方法(S-FGRM),以提高制作的对抗性示例的可传递性。具体来说,我们使用数据重新缩放来代替基于梯度的攻击,而无需额外的计算成本来代替基于梯度的攻击。我们还提出了一种深度第一个抽样方法,以消除重新缩放和稳定梯度更新的波动。我们的方法可用于任何基于梯度的优化,并且可扩展,以与各种输入转换或集合方法集成以进一步提高对抗性转移性。标准图像网数据集的广泛实验表明,我们的S-FGRM可以显着提高基于梯度的攻击的转移性,并表现优于最先进的基线。

Deep neural networks have shown to be very vulnerable to adversarial examples crafted by adding human-imperceptible perturbations to benign inputs. After achieving impressive attack success rates in the white-box setting, more focus is shifted to black-box attacks. In either case, the common gradient-based approaches generally use the $sign$ function to generate perturbations at the end of the process. However, only a few works pay attention to the limitation of the $sign$ function. Deviation between the original gradient and the generated noises may lead to inaccurate gradient update estimation and suboptimal solutions for adversarial transferability, which is crucial for black-box attacks. To address this issue, we propose a Sampling-based Fast Gradient Rescaling Method (S-FGRM) to improve the transferability of the crafted adversarial examples. Specifically, we use data rescaling to substitute the inefficient $sign$ function in gradient-based attacks without extra computational cost. We also propose a Depth First Sampling method to eliminate the fluctuation of rescaling and stabilize the gradient update. Our method can be used in any gradient-based optimizations and is extensible to be integrated with various input transformation or ensemble methods for further improving the adversarial transferability. Extensive experiments on the standard ImageNet dataset show that our S-FGRM could significantly boost the transferability of gradient-based attacks and outperform the state-of-the-art baselines.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源