论文标题

接收器功能和表面波分散的联合反转的多任务无味的卡尔曼反演

Multi-task Unscented Kalman Inversion for joint inversion of receiver function and surface wave dispersion

论文作者

Longlong, Wang, Youshan, Liu, Yun, Chen, nanqiao, Du

论文摘要

基于最近开发的计算数学中无意义的卡尔曼反转理论,我们提出了一个贝叶斯关节反转框架,即多任务无心的卡尔曼反转(MTUKI),并将其应用于接收器功能(RF)和表面波浪分散(SWD)的关节反转(SWD)。该方法可以以无衍生化的方式共享不同观测值之间的信息,并为模型参数的后验分布(每层介质中的厚度和S波速度)提供有效的高斯近似值。理论和实验表明,我们提出的框架在鲁棒性,准确性和高效率方面表现出了卓越的性能。

Based on the recently developed theory of Unscented Kalman Inversion in computational mathematics, we proposed a Bayesian joint inversion framework, i.e., Multi-task Unscented Kalman Inversion (MTUKI), and apply it to the joint inversion of receiver function (RF) and surface wave dispersion (SWD). This method can share information between different observations in a derivative-free way and provide an efficient Gaussian approximation to the posterior distribution of model parameters (thickness and S-wave velocity in each layer of media). The theory and experiments show that our proposed framework demonstrates superior performance in terms of robustness, accuracy, and high efficiency.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源