论文标题

学习通过像素级噪声吸引对抗性训练来产生逼真的嘈杂图像

Learning to Generate Realistic Noisy Images via Pixel-level Noise-aware Adversarial Training

论文作者

Cai, Yuanhao, Hu, Xiaowan, Wang, Haoqian, Zhang, Yulun, Pfister, Hanspeter, Wei, Donglai

论文摘要

现有的深度学习真正的denoising方法需要大量嘈杂的清洁图像对进行监督。尽管如此,捕获真正的嘈杂清洁数据集是一个不可接受的昂贵且繁琐的程序。为了减轻这个问题,这项工作研究了如何产生逼真的嘈杂图像。首先,我们制定了一个简单而合理的噪声模型,该模型将每个真实的嘈杂像素视为随机变量。该模型将嘈杂的图像生成问题分为两个子问题:图像域的比对和噪声域对齐。随后,我们提出了一个新颖的框架,即像素级噪声感知的生成对抗网络(PNGAN)。 PNGAN使用预先训练的真实DeNoiser将伪造和真实的噪声图像映射到几乎无噪声的解决方案空间中,以执行图像域对齐。同时,PNGAN建立了像素级对手训练以进行噪声域的比对。此外,为了获得更好的噪声拟合,我们提出了一个有效的体系结构简单的多尺度网络(SMNET)作为发电机。定性验证表明,就强度和分布而言,PNGAN产生的噪声与真实噪声高度相似。定量实验表明,一系列经过生成的嘈杂图像训练的DeNoisers在四个真正的Denoising基准测试中获得了最新的(SOTA)结果。可以在https://github.com/caiyuanhao1998/pngan上获得代码,预训练模型和结果的一部分。

Existing deep learning real denoising methods require a large amount of noisy-clean image pairs for supervision. Nonetheless, capturing a real noisy-clean dataset is an unacceptable expensive and cumbersome procedure. To alleviate this problem, this work investigates how to generate realistic noisy images. Firstly, we formulate a simple yet reasonable noise model that treats each real noisy pixel as a random variable. This model splits the noisy image generation problem into two sub-problems: image domain alignment and noise domain alignment. Subsequently, we propose a novel framework, namely Pixel-level Noise-aware Generative Adversarial Network (PNGAN). PNGAN employs a pre-trained real denoiser to map the fake and real noisy images into a nearly noise-free solution space to perform image domain alignment. Simultaneously, PNGAN establishes a pixel-level adversarial training to conduct noise domain alignment. Additionally, for better noise fitting, we present an efficient architecture Simple Multi-scale Network (SMNet) as the generator. Qualitative validation shows that noise generated by PNGAN is highly similar to real noise in terms of intensity and distribution. Quantitative experiments demonstrate that a series of denoisers trained with the generated noisy images achieve state-of-the-art (SOTA) results on four real denoising benchmarks. Part of codes, pre-trained models, and results are available at https://github.com/caiyuanhao1998/PNGAN for comparisons.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源