论文标题
行为视频分析的开源工具:设置,方法和开发
Open-Source Tools for Behavioral Video Analysis: Setup, Methods, and Development
论文作者
论文摘要
最近开发的视频分析方法,尤其是用于姿势估计和行为分类的模型,正在将行为量化转换为在神经科学和伦理学等领域中更精确,可扩展和可重现。这些工具克服了视频帧和传统“大众中心”跟踪算法的长期局限性,以启用视频分析。开源工具的扩展用于视频获取和分析,导致了了解行为的新实验方法。在这里,我们回顾了当前可用的开源工具,用于视频分析,并讨论如何为新的视频录制的实验室设置这些方法。我们还讨论了开发和使用视频分析方法的最佳实践,包括社区范围的标准和关键需求,以开放数据集和代码,更广泛地比较视频分析方法,以及这些方法的更好文档,尤其是针对新用户。我们鼓励更广泛的采用和继续开发这些工具,这些工具在理解大脑和行为方面具有巨大的科学进步潜力。
Recently developed methods for video analysis, especially models for pose estimation and behavior classification, are transforming behavioral quantification to be more precise, scalable, and reproducible in fields such as neuroscience and ethology. These tools overcome long-standing limitations of manual scoring of video frames and traditional "center of mass" tracking algorithms to enable video analysis at scale. The expansion of open-source tools for video acquisition and analysis has led to new experimental approaches to understand behavior. Here, we review currently available open-source tools for video analysis and discuss how to set up these methods for labs new to video recording. We also discuss best practices for developing and using video analysis methods, including community-wide standards and critical needs for the open sharing of datasets and code, more widespread comparisons of video analysis methods, and better documentation for these methods especially for new users. We encourage broader adoption and continued development of these tools, which have tremendous potential for accelerating scientific progress in understanding the brain and behavior.