论文标题

用对称的Galois组在随机多项式上的范德华顿猜想的注释

A note on the van der Waerden conjecture on random polynomials with symmetric Galois group for function fields

论文作者

Kaltofen, Erich L.

论文摘要

令f(x)= x^n +(a [n-1] t + b [n-1])x^(n-1) + ... + ... +(a [0] t + b [0])在x中为恒定度n,t in t in t and t in t in t,其中所有a [i],b [i] b [i]均随机和均匀地从q元素的q元素的有限fielt gf(q)中选择。然后,f对合理函数场GF(q)(t)上F的GALOIS组的概率是N元素上的对称组S(N)为1 -O(1/Q)。此外,gf(q)(q)(t)上的f(x)的Galois组不是s(n)的> = 1/q,对于n> = 3和> 1/q -1/q -1/(2q^2),对于n = 2。

Let f(x) = x^n + (a[n-1] t + b[n-1]) x^(n-1) + ... + (a[0] t + b[0]) be of constant degree n in x and degree <= 1 in t, where all a[i],b[i] are randomly and uniformly selected from a finite field GF(q) of q elements. Then the probability that the Galois group of f over the rational function field GF(q)(t) is the symmetric group S(n) on n elements is 1 - O(1/q). Furthermore, the probability that the Galois group of f(x) over GF(q)(t) is not S(n) is >= 1/q for n >= 3 and > 1/q - 1/(2q^2) for n = 2.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源