论文标题
使用结构从结构上进行空中红外视频的光伏模块的地理发射
Georeferencing of Photovoltaic Modules from Aerial Infrared Videos using Structure-from-Motion
论文作者
论文摘要
为了在经济上鉴定大型PV植物中的异常光伏(PV)模块,经常使用无人机安装的红外(IR)摄像头和自动化视频处理算法。虽然大多数相关的工作都集中在检测异常模块上,但几乎没有采取任何措施将这些模块自动定位在工厂内。在这项工作中,我们使用增量结构从动作中自动获得基于视觉提示和无人机的GPS轨迹的植物中所有PV模块的地理符号。此外,我们提取每个PV模块的多个IR图像。使用我们的方法,我们成功地绘制了四个大规模和一个屋顶工厂的35084模块的99.3%,并提取超过220万个模块图像。与我们以前的工作相比,提取的模块少了18倍(140个模块中有一个比八分之一)。此外,可以同时处理两到三个植物行,将模块吞吐量增加,并将飞行持续时间分别减少2.1和3.7。与其中一种大规模植物的精确正射击相比,估计的模块地理符号为5.87 m的均方根误差,并且每个植物行的相对误差为0.22 m至0.82 m。最后,我们使用模块地理符号并提取IR图像来可视化模块温度的分布和对地图上深度学习分类器的异常预测。尽管温度分布有助于识别断开的字符串,但我们还发现,其检测到模块异常的检测准确性甚至超过了深度学习分类器的检测准确性,其中七个常见的异常类型中有七个。该软件发表在https://github.com/lukasbommes/pv-hawk上。
To identify abnormal photovoltaic (PV) modules in large-scale PV plants economically, drone-mounted infrared (IR) cameras and automated video processing algorithms are frequently used. While most related works focus on the detection of abnormal modules, little has been done to automatically localize those modules within the plant. In this work, we use incremental structure-from-motion to automatically obtain geocoordinates of all PV modules in a plant based on visual cues and the measured GPS trajectory of the drone. In addition, we extract multiple IR images of each PV module. Using our method, we successfully map 99.3 % of the 35084 modules in four large-scale and one rooftop plant and extract over 2.2 million module images. As compared to our previous work, extraction misses 18 times less modules (one in 140 modules as compared to one in eight). Furthermore, two or three plant rows can be processed simultaneously, increasing module throughput and reducing flight duration by a factor of 2.1 and 3.7, respectively. Comparison with an accurate orthophoto of one of the large-scale plants yields a root mean square error of the estimated module geocoordinates of 5.87 m and a relative error within each plant row of 0.22 m to 0.82 m. Finally, we use the module geocoordinates and extracted IR images to visualize distributions of module temperatures and anomaly predictions of a deep learning classifier on a map. While the temperature distribution helps to identify disconnected strings, we also find that its detection accuracy for module anomalies reaches, or even exceeds, that of a deep learning classifier for seven out of ten common anomaly types. The software is published at https://github.com/LukasBommes/PV-Hawk.