论文标题
对衍射数学理论的贡献。第一部分:关于双傅里叶积分的注释
A contribution to the mathematical theory of diffraction. Part I: A note on double Fourier integrals
论文作者
论文摘要
我们认为将大量的物理字段$ u $写为两个复杂变量的某些功能的双重逆傅里叶变换。这种积分经常在实践中发生,尤其是在衍射理论中。我们的目的是提供$ U $的封闭形式的远场渐近扩展。为此,我们需要将轮廓压痕的良好复杂分析概念推广到两个复杂变量的功能积分。它是通过引入所谓的桥梁和箭头符号来完成的。由于另一个集成表面变形,我们表明,为了实现我们的目标,我们只需要研究傅立叶空间中的有限数量的实际点:贡献点即可。该结果称为地方原则。我们提供了一系列结果,允许人们决定是否有贡献。此外,对于每个贡献点,我们将$ U $的明确封闭形式远距离渐近组件关联。我们通过针对两个特定示例验证完整数值计算的理论来结束这篇文章。
We consider a large class of physical fields $u$ written as double inverse Fourier transforms of some functions $F$ of two complex variables. Such integrals occur very often in practice, especially in diffraction theory. Our aim is to provide a closed-form far-field asymptotic expansion of $u$. In order to do so, we need to generalise the well-established complex analysis notion of contour indentation to integrals of functions of two complex variables. It is done by introducing the so-called bridge and arrow notation. Thanks to another integration surface deformation, we show that, to achieve our aim, we only need to study a finite number of real points in the Fourier space: the contributing points. This result is called the locality principle. We provide an extensive set of results allowing one to decide whether a point is contributing or not. Moreover, to each contributing point, we associate an explicit closed-form far-field asymptotic component of $u$. We conclude the article by validating this theory against full numerical computations for two specific examples.