论文标题
旅行小偷问题的进化多样性优化
Evolutionary Diversity Optimisation for The Traveling Thief Problem
论文作者
论文摘要
对进化计算社区的兴趣越来越大,他们为给定优化问题计算一套多样化的高质量解决方案。这可以为从业者提供有关解决方案空间和鲁棒性的宝贵信息,以防止建模和较小的问题的变化。它还使决策者能够参与他们的利益并在各种解决方案之间进行选择。在这项研究中,我们首次研究了一个突出的多组分优化问题,即旅行小偷问题(TTP),在进化多样性优化的背景下。我们引入了双层进化算法,以最大程度地提高解决方案集的结构多样性。此外,我们在结构多样性方面检查了问题的组成部分之间的相互依赖性,并从经验上确定获得多样性的最佳方法。我们还进行了全面的实验研究,以检查引入的算法并将结果与基于质量多样性(QD)的另一个最近引入的框架进行比较。我们的实验结果表明,对于大多数TTP基准实例,QD方法在结构多样性方面有了显着改善。
There has been a growing interest in the evolutionary computation community to compute a diverse set of high-quality solutions for a given optimisation problem. This can provide the practitioners with invaluable information about the solution space and robustness against imperfect modelling and minor problems' changes. It also enables the decision-makers to involve their interests and choose between various solutions. In this study, we investigate for the first time a prominent multi-component optimisation problem, namely the Traveling Thief Problem (TTP), in the context of evolutionary diversity optimisation. We introduce a bi-level evolutionary algorithm to maximise the structural diversity of the set of solutions. Moreover, we examine the inter-dependency among the components of the problem in terms of structural diversity and empirically determine the best method to obtain diversity. We also conduct a comprehensive experimental investigation to examine the introduced algorithm and compare the results to another recently introduced framework based on the use of Quality Diversity (QD). Our experimental results show a significant improvement of the QD approach in terms of structural diversity for most TTP benchmark instances.