论文标题

首席:大型网络中具有高阶图案的聚类

CHIEF: Clustering with Higher-order Motifs in Big Networks

论文作者

Xia, Feng, Yu, Shuo, Liu, Chengfei, Lee, Ivan

论文摘要

将一组顶点聚集在网络中,促进了跨不同领域的应用程序,例如社交计算和物联网。但是,对于增加规模的聚类网络会出现挑战。本文提出了一种解决方案,该解决方案包括两种基序聚类技术:标准加速度首席​​-ST和近似加速度的主要AP。两种算法首先找到目标网络中的最大K边缘连接子图,以降低网络量表,然后在聚类中采用高阶基序。在第一个过程中,我们建议通过使用最大K边缘连接子图优化网络结构来降低网络量表。对于首席st,我们说明,当目标基序的最小节点相等或大于k时,所有目标基序都将在此过程后保留。对于首席AP,我们证明邻接矩阵和拉普拉斯矩阵的特征值相对稳定。也就是说,酋长-ST对图案聚类没有影响,而首席AP引入了有限但可接受的影响。在第二个过程中,我们采用高阶基序,即在高阶密集网络中聚类的异质四节点基序。首席的贡献是两个方面的贡献:(1)大型网络的图案聚类效率提高; (2)验证高阶基序的显着性。根据对真实和合成网络的实验,发现所提出的解决方案超过了基线方法,这些实验证明了酋长在大型网络分析中的强度。同时,事实证明,高阶图案的性能要比传统的三角基序表现更好。

Clustering a group of vertices in networks facilitates applications across different domains, such as social computing and Internet of Things. However, challenges arises for clustering networks with increased scale. This paper proposes a solution which consists of two motif clustering techniques: standard acceleration CHIEF-ST and approximate acceleration CHIEF-AP. Both algorithms first find the maximal k-edge-connected subgraphs within the target networks to lower the network scale, then employ higher-order motifs in clustering. In the first procedure, we propose to lower the network scale by optimizing the network structure with maximal k-edge-connected subgraphs. For CHIEF-ST, we illustrate that all target motifs will be kept after this procedure when the minimum node degree of the target motif is equal or greater than k. For CHIEF-AP, we prove that the eigenvalues of the adjacency matrix and the Laplacian matrix are relatively stable after this step. That is, CHIEF-ST has no influence on motif clustering, whereas CHIEF-AP introduces limited yet acceptable impact. In the second procedure, we employ higher-order motifs, i.e., heterogeneous four-node motifs clustering in higher-order dense networks. The contributions of CHIEF are two-fold: (1) improved efficiency of motif clustering for big networks; (2) verification of higher-order motif significance. The proposed solutions are found to outperform baseline approaches according to experiments on real and synthetic networks, which demonstrates CHIEF's strength in large network analysis. Meanwhile, higher-order motifs are proved to perform better than traditional triangle motifs in clustering.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源