论文标题
Black-Box Min-使用CMA-E具有最差案例排名近似的CMA-ES连续优化
Black-Box Min--Max Continuous Optimization Using CMA-ES with Worst-case Ranking Approximation
论文作者
论文摘要
在这项研究中,我们研究了在黑色框设置$ \ min_ {x} \ max_ {y} f(x,x,y)$中的最小值连续优化的问题。一种流行的方法同时或交替地更新$ x $和$ y $。但是,现有方法已报告了两个主要限制。 (i)作为$ x $和$ y $(例如,$ x^\ mathrm {t} b y $)之间的交互作用的影响,lipschitz平滑且强烈凸出conconcove函数$ f $增加,这些方法会以较高的速度收敛到最佳解决方案。 (ii)如果$ f $不是Lipschitz平滑且在最佳解决方案周围强烈凸出孔concave,则该方法无法收敛。为了解决这些困难,我们建议将最差的目标函数$ f(x)= \ max_ {y} f(x,y)$直接使用协方差矩阵适应性进化策略,在这种策略中,解决方案候选者的排名由我们提出的拟议中的最差排名排名近似(WRA)机制近似。与现有方法相比,数值实验显示了有关我们提出的方法的两个重要发现。 (1)所提出的方法在Lipschitz上的$ f $ calls方面是有效的,具有较大的相互作用项。 (2)所提出的方法可以收敛于不是Lipschitz平滑且强烈凸出最佳解决方案的功能,而现有方法失败。
In this study, we investigate the problem of min-max continuous optimization in a black-box setting $\min_{x} \max_{y}f(x,y)$. A popular approach updates $x$ and $y$ simultaneously or alternatingly. However, two major limitations have been reported in existing approaches. (I) As the influence of the interaction term between $x$ and $y$ (e.g., $x^\mathrm{T} B y$) on the Lipschitz smooth and strongly convex-concave function $f$ increases, the approaches converge to an optimal solution at a slower rate. (II) The approaches fail to converge if $f$ is not Lipschitz smooth and strongly convex-concave around the optimal solution. To address these difficulties, we propose minimizing the worst-case objective function $F(x)=\max_{y}f(x,y)$ directly using the covariance matrix adaptation evolution strategy, in which the rankings of solution candidates are approximated by our proposed worst-case ranking approximation (WRA) mechanism. Compared with existing approaches, numerical experiments show two important findings regarding our proposed method. (1) The proposed approach is efficient in terms of $f$-calls on a Lipschitz smooth and strongly convex-concave function with a large interaction term. (2) The proposed approach can converge on functions that are not Lipschitz smooth and strongly convex-concave around the optimal solution, whereas existing approaches fail.