论文标题
在嘈杂的注释下朝着强大的自适应对象检测
Towards Robust Adaptive Object Detection under Noisy Annotations
论文作者
论文摘要
域自适应对象检测(DAOD)对图像和标签的联合分布从带注释的源域进行了建模,并学习了域不变的转换,以用给定的目标域图像估算目标标签。现有方法假设源域标签完全干净,但由于实例歧义而导致的大规模数据集通常包含容易出错的注释,这可能导致偏见的源分布,并严重降低了域自适应检测器的性能。在本文中,我们代表了制定嘈杂daod并提出噪声潜在可转移性探索(NLTE)框架以解决此问题的第一个努力。它具有1)潜在实例挖掘(PIM),该实例采矿(PIM)利用合格的提案从背景中重新夺回了无误的实例; 2)可变形的图形关系模块(MGRM),该模块建模具有关系矩阵的嘈杂样品的适应性和过渡概率; 3)将语义信息纳入歧视过程中,并实施嘈杂和干净的样本提供的梯度,以一致学习域名 - 不变性表示。对具有嘈杂源注释的基准DAOD数据集进行了彻底的评估,验证了NLTE的有效性。特别是,NLTE在60 \%损坏的注释下将地图提高了8.4 \%,甚至接近了干净源数据集上培训的理想上限。
Domain Adaptive Object Detection (DAOD) models a joint distribution of images and labels from an annotated source domain and learns a domain-invariant transformation to estimate the target labels with the given target domain images. Existing methods assume that the source domain labels are completely clean, yet large-scale datasets often contain error-prone annotations due to instance ambiguity, which may lead to a biased source distribution and severely degrade the performance of the domain adaptive detector de facto. In this paper, we represent the first effort to formulate noisy DAOD and propose a Noise Latent Transferability Exploration (NLTE) framework to address this issue. It is featured with 1) Potential Instance Mining (PIM), which leverages eligible proposals to recapture the miss-annotated instances from the background; 2) Morphable Graph Relation Module (MGRM), which models the adaptation feasibility and transition probability of noisy samples with relation matrices; 3) Entropy-Aware Gradient Reconcilement (EAGR), which incorporates the semantic information into the discrimination process and enforces the gradients provided by noisy and clean samples to be consistent towards learning domain-invariant representations. A thorough evaluation on benchmark DAOD datasets with noisy source annotations validates the effectiveness of NLTE. In particular, NLTE improves the mAP by 8.4\% under 60\% corrupted annotations and even approaches the ideal upper bound of training on a clean source dataset.