论文标题

物联网:物联网的网络侦察

IoT-Scan: Network Reconnaissance for the Internet of Things

论文作者

Gvozdenovic, Stefan, Becker, Johannes K, Mikulskis, John, Starobinski, David

论文摘要

网络侦察是一种核心网络和安全程序,旨在发现设备及其属性。对于基于IP的网络,可以使用几种网络侦察工具,例如NMAP。对于物联网(IoT),目前尚无类似的工具能够跨多个协议发现设备。在本文中,我们提出了一种通用物联网网络侦察工具IoT-Scan。 IoT-Scan基于软件定义的无线电技术(SDR)技术,该技术允许基于软件的无线电协议实现。我们提出了一系列被动,主动,多通道和多协议扫描算法,以加快使用IoT扫描的设备发现。我们基于基于非统一优惠券收集器问题的理论交通模型对被动扫描算法进行基准测试。我们实施了扫描算法,并比较了四个流行的物联网协议的性能:Zigbee,蓝牙LE,Z-WAVE和LORA。通过数十个IoT设备的广泛实验,我们证明了我们的实施经历最小的数据包损失,并在理论基准附近实现了性能。使用多协议扫描,我们进一步证明了在2.4 \,GHz频段中的蓝牙和Zigbee设备的发现时降低了70 \%,与顺序的辐射扫描相比,在900 \,MHz频段中的Lora和Z-Wave设备的降低。我们使我们的实施和数据可用于研究社区,以允许独立复制我们的结果,并促进该工具的进一步开发。

Network reconnaissance is a core networking and security procedure aimed at discovering devices and their properties. For IP-based networks, several network reconnaissance tools are available, such as Nmap. For the Internet of Things (IoT), there is currently no similar tool capable of discovering devices across multiple protocols. In this paper, we present IoT-Scan, a universal IoT network reconnaissance tool. IoT-Scan is based on software defined radio (SDR) technology, which allows for a flexible software-based implementation of radio protocols. We present a series of passive, active, multi-channel, and multi-protocol scanning algorithms to speed up the discovery of devices with IoT-Scan. We benchmark the passive scanning algorithms against a theoretical traffic model based on the non-uniform coupon collector problem. We implement the scanning algorithms and compare their performance for four popular IoT protocols: Zigbee, Bluetooth LE, Z-Wave, and LoRa. Through extensive experiments with dozens of IoT devices, we demonstrate that our implementation experiences minimal packet losses and achieves performance near the theoretical benchmark. Using multi-protocol scanning, we further demonstrate a reduction of 70\% in the discovery times of Bluetooth and Zigbee devices in the 2.4\,GHz band and of LoRa and Z-Wave devices in the 900\,MHz band, compared to sequential passive scanning. We make our implementation and data available to the research community to allow independent replication of our results and facilitate further development of the tool.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源