论文标题
在磁性半分CR1+DTE2中广泛可调的浆果曲率
Widely Tunable Berry curvature in the Magnetic Semimetal Cr1+dTe2
论文作者
论文摘要
磁性半学越来越多地出现,因为有利可图的平台在真实和动量空间中托管基于自旋的拓扑现象。特别有趣的是浆果曲率的出现,浆果曲率的几何起源,霍尔运输实验的可及性以及物质可调性,适合新的物理和实用设备。 CR1+DTE2是一种自我插值的磁过渡金属二甲硅烷,TMD,具有与此类应用有关的有吸引力的自然属性,包括拓扑磁性,可调电子填充,磁性挫败感等。尽管最近的研究探索了真实空间的浆果浆果曲率在此材料中的效果,但相似的考虑到了Momkum-Space Berry berry Curvature curvature curvature curvature curvature of Momment Space Berry curvature overancature of Fastic curvature。在这里,我们系统地研究了在广泛的掺杂范围内的外延CR1+DTE2薄膜的电子结构和运输特性,d在0.33至0.71之间。光谱实验揭示了布里鲁因区边缘附近的特征半金属带区域的存在,该区域显示了一个刚性带,例如能量移动,d的函数。运输实验表明,异常大厅效应AHE的固有组成部分是相当大的,并且在d上经历了一个符号。最后,密度功能理论计算在频带结构的观察到的掺杂演化与AHE之间建立了因果关系:AHE符号翻转从浆果曲率的符号变化中浮出水面,因为半金属带区域穿过Fermi能量。我们的发现强调了磁性TMD中动量空间浆果曲率的不断增长,并为在真实和动量空间中交织拓扑物理的独特平台提供了独特的平台。
Magnetic semimetals have increasingly emerged as lucrative platforms hosting spin-based topological phenomena in real and momentum spaces. Of particular interest is the emergence of Berry curvature, whose geometric origin, accessibility from Hall transport experiments, and material tunability, bodes well for new physics and practical devices. Cr1+dTe2, a self-intercalated magnetic transition metal dichalcogenide, TMD, exhibits attractive natural attributes relevant to such applications, including topological magnetism, tunable electron filling, magnetic frustration etc. While recent studies have explored real-space Berry curvature effects in this material, similar considerations of momentum-space Berry curvature are lacking. Here, we systematically investigate the electronic structure and transport properties of epitaxial Cr1+dTe2 thin films over a wide range of doping, d between 0.33 and 0.71. Spectroscopic experiments reveal the presence of a characteristic semi-metallic band region near the Brillouin Zone edge, which shows a rigid band like energy shift as a function of d. Transport experiments show that the intrinsic component of the anomalous Hall effect, AHE, is sizable, and undergoes a sign flip across d. Finally, density functional theory calculations establish a causal link between the observed doping evolution of the band structure and AHE: the AHE sign flip is shown to emerge from the sign change of the Berry curvature, as the semi-metallic band region crosses the Fermi energy. Our findings underscore the increasing relevance of momentum-space Berry curvature in magnetic TMDs and provide a unique platform for intertwining topological physics in real and momentum spaces.