论文标题

在所有固态薄膜电池中阐明稳定的阴极电解质界面,在5V下运行

Unraveling the stable cathode electrolyte interface in all solid-state thin-film battery operating at 5V

论文作者

Shimizu, Ryosuke, Cheng, Diyi, Zhang, Minghao, Lu, Bingyu, Wynn, Thomas A., Burger, Randall, Kim, Min-cheol, Zhu, Guomin, Meng, Ying Shirley

论文摘要

尖晶石型Lini0.5MN1.5O4(LNMO)是最有前途的5级V级阴极材料之一,用于锂离子电池,可以实现高能量密度和低生产成本。但是,在液体电解质细胞中,高压通过碳酸盐基液体电解质的氧化分解导致连续细胞降解。相比之下,某些固态电解质具有较大的电化学稳定性范围,并且可以承受所需的氧化潜力。在这项工作中,测试了由LNMO阴极组成的薄膜电池,测试了带有固体锂氧硝酸锂(Lipon)电解质的电池,并在循环前后进行了测试,其界面被表征。以Li Metal作为阳极,该系统可以为600个周期提供稳定的性能,平均库仑效率> 99%。中子深度分析表明骑自行车前的界面处的略微超闪光层。结果与在第一个周期中测得的超额充电能力一致。低温电子显微镜进一步揭示了LNMO与Lipon之间的紧密接触,没有明显的结构和延长循环后的化学成分演化,这表明Lipon对高压阴极的稳定性出色。因此,我们提出了有关界面工程设计指南,该指南可以加速使用固体或液体电解质的高压电池的商业化。

Spinel-type LiNi0.5Mn1.5O4 (LNMO) is one of the most promising 5 V-class cathode materials for Li-ion batteries that can achieve high energy density and low production costs. However, in liquid electrolyte cells, the high voltage causes continuous cell degradation through the oxidative decomposition of carbonate-based liquid electrolytes. In contrast, some solid-state electrolytes have a wide electrochemical stability range and can withstand the required oxidative potential. In this work, a thin-film battery consisting of a LNMO cathode with a solid lithium phosphorus oxynitride (LiPON) electrolyte is tested and their interface before and after cycling is characterized. With Li metal as the anode, this system can deliver stable performance for 600 cycles with an average Coulombic efficiency > 99%. Neutron depth profiling indicates a slight overlithiated layer at the interface prior to cycling; a result that is consistent with the excess charge capacity measured during the first cycle. Cryogenic electron microscopy further reveals intimate contact between LNMO and LiPON without noticeable structure and chemical composition evolution after extended cycling, demonstrating the superior stability of LiPON against a high voltage cathode. Consequently, we propose design guidelines for interface engineering that could accelerate the commercialization of a high voltage cell with solid or liquid electrolytes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源