论文标题

通过系统浸入和随机矩阵加密,保护隐私的联合学习

Privacy-Preserving Federated Learning via System Immersion and Random Matrix Encryption

论文作者

Hayati, Haleh, Murguia, Carlos, van de Wouw, Nathan

论文摘要

联合学习(FL)已成为协作分布式学习的隐私解决方案,客户直接在其设备上培训AI模型,而不是与集中式(潜在的对手)服务器共享数据。尽管FL在某种程度上保留了本地数据隐私,但已显示有关客户数据的信息仍然可以从模型更新中推断出来。近年来,已经制定了各种保护隐私的计划来解决这种隐私泄漏。但是,它们通常以牺牲模型性能或系统效率为代价提供隐私,而在实施FL计划时,平衡这些权衡是一个至关重要的挑战。在本手稿中,我们提出了一个隐私的联合学习(PPFL)框架,该框架构建了基于控制理论的矩阵加密和系统沉浸工具的协同作用。这个想法是将学习算法(一种随机梯度(SGD))浸入更高维度的系统(所谓的目标系统)中,并设计目标系统的动力学,以使原始SGD的轨迹沉浸/嵌入到其轨迹中,并在此处学习,并在此处学习(我们在此中学习)。矩阵加密是在服务器上重新构建的,作为将原始参数映射到更高维的参数空间的坐标的随机更改,并执行目标SGD收敛到原始SGD Optiral解决方案的加密版本。服务器使用浸入式地图的左侧对汇总模型解密。我们表明,我们的算法提供了与标准FL相同的准确性和收敛速度,而计算成本可忽略不计,同时却没有透露有关客户数据的信息。

Federated learning (FL) has emerged as a privacy solution for collaborative distributed learning where clients train AI models directly on their devices instead of sharing their data with a centralized (potentially adversarial) server. Although FL preserves local data privacy to some extent, it has been shown that information about clients' data can still be inferred from model updates. In recent years, various privacy-preserving schemes have been developed to address this privacy leakage. However, they often provide privacy at the expense of model performance or system efficiency, and balancing these tradeoffs is a crucial challenge when implementing FL schemes. In this manuscript, we propose a Privacy-Preserving Federated Learning (PPFL) framework built on the synergy of matrix encryption and system immersion tools from control theory. The idea is to immerse the learning algorithm, a Stochastic Gradient Decent (SGD), into a higher-dimensional system (the so-called target system) and design the dynamics of the target system so that: the trajectories of the original SGD are immersed/embedded in its trajectories, and it learns on encrypted data (here we use random matrix encryption). Matrix encryption is reformulated at the server as a random change of coordinates that maps original parameters to a higher-dimensional parameter space and enforces that the target SGD converges to an encrypted version of the original SGD optimal solution. The server decrypts the aggregated model using the left inverse of the immersion map. We show that our algorithm provides the same level of accuracy and convergence rate as the standard FL with a negligible computation cost while revealing no information about the clients' data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源