论文标题
Ramanujan的一致性与奇数差异有限
Ramanujan congruences for overpartitions with restricted odd differences
论文作者
论文摘要
我们研究了Ramanujan一致性的功能,该功能计算了N的零件差异有限的差异。特别是,我们表明只有一种这样的一致性。我们的方法涉及使用模块化形式的理论来证明一种更通用的定理,该定理界定了某些ETA量表中Ramanujan一致性可能的数量。这概括了乔纳·辛尼克(Jonah Sinick)所做的工作。我们还为此功能提供了两个一致性Modulo 5。
We investigate Ramanujan congruences for the function which counts the overpartitions of n with restricted odd differences. In particular, we show that only one such congruence exists. Our method involves using the theory of modular forms to prove a more general theorem which bounds the number of primes possible for Ramanujan congruences in certain eta-quotients. This generalizes work done by Jonah Sinick. We also provide two congruences modulo 5 for this function.