论文标题
数字病理学中的医院敏锐图像表示学习
Hospital-Agnostic Image Representation Learning in Digital Pathology
论文作者
论文摘要
数字病理学中的整个幻灯片图像(WSI)用于诊断癌症亚型。在各种试验地点获取WSI的程序的差异会导致组织病理学图像的变化,从而使诊断始终如一。这些差异可能源于通过多供应商扫描仪,可变采集参数以及染色程序的差异的图像采集的可变性。同样,患者人口统计可能会在获取图像之前偏向玻璃滑梯批次。假定这些变异性会导致不同医院图像的域转移。克服这个领域的转移至关重要,因为理想的机器学习模型必须能够在与收购中心无关的图像来源上工作。在本研究中,在本研究中利用了域的概括技术,以提高深度神经网络(DNN)的概括能力,并在存在域移位的情况下,在看不见的组织病理学图像集(即,从看不见的医院/试验地点)。根据实验结果,传统的监督学习制度对从不同医院收集的数据概括了。但是,考虑到低维的潜在空间表示可视化和分类准确性结果,提出的医院不足学习可以改善概括。
Whole Slide Images (WSIs) in digital pathology are used to diagnose cancer subtypes. The difference in procedures to acquire WSIs at various trial sites gives rise to variability in the histopathology images, thus making consistent diagnosis challenging. These differences may stem from variability in image acquisition through multi-vendor scanners, variable acquisition parameters, and differences in staining procedure; as well, patient demographics may bias the glass slide batches before image acquisition. These variabilities are assumed to cause a domain shift in the images of different hospitals. It is crucial to overcome this domain shift because an ideal machine-learning model must be able to work on the diverse sources of images, independent of the acquisition center. A domain generalization technique is leveraged in this study to improve the generalization capability of a Deep Neural Network (DNN), to an unseen histopathology image set (i.e., from an unseen hospital/trial site) in the presence of domain shift. According to experimental results, the conventional supervised-learning regime generalizes poorly to data collected from different hospitals. However, the proposed hospital-agnostic learning can improve the generalization considering the low-dimensional latent space representation visualization, and classification accuracy results.