论文标题

RBGNET:用于3D对象检测的基于射线的分组

RBGNet: Ray-based Grouping for 3D Object Detection

论文作者

Wang, Haiyang, Shi, Shaoshuai, Yang, Ze, Fang, Rongyao, Qian, Qi, Li, Hongsheng, Schiele, Bernt, Wang, Liwei

论文摘要

作为计算机视觉中的基本问题,3D对象检测正在经历快速增长。为了从不规则且稀疏分布的点中提取点的特征,以前的方法通常采用特征分组模块将点特征汇总到对象候选者中。但是,这些方法尚未利用前景对象的表面几何形状来增强分组和3D盒的生成。在本文中,我们提出了RBGNET框架,RBGNET框架是一种基于投票的3D检测器,可从点云进行准确的3D对象检测。为了了解对象形状的更好表示以增强用于预测3D框的群集功能,我们提出了一个基于射线的特征分组模块,该模块使用一组从群集中心发出的确定的射线在对象表面上汇总了点的特征。考虑到前景点对于盒子估计更有意义,我们在下样本过程中设计了一种新颖的前景偏见采样策略,以在对象表面上采样更多点并进一步提高检测性能。我们的模型在扫描仪V2和Sun RGB-D上实现了最先进的3D检测性能,具有显着的性能。代码将在https://github.com/haiyang-w/rbgnet上找到。

As a fundamental problem in computer vision, 3D object detection is experiencing rapid growth. To extract the point-wise features from the irregularly and sparsely distributed points, previous methods usually take a feature grouping module to aggregate the point features to an object candidate. However, these methods have not yet leveraged the surface geometry of foreground objects to enhance grouping and 3D box generation. In this paper, we propose the RBGNet framework, a voting-based 3D detector for accurate 3D object detection from point clouds. In order to learn better representations of object shape to enhance cluster features for predicting 3D boxes, we propose a ray-based feature grouping module, which aggregates the point-wise features on object surfaces using a group of determined rays uniformly emitted from cluster centers. Considering the fact that foreground points are more meaningful for box estimation, we design a novel foreground biased sampling strategy in downsample process to sample more points on object surfaces and further boost the detection performance. Our model achieves state-of-the-art 3D detection performance on ScanNet V2 and SUN RGB-D with remarkable performance gains. Code will be available at https://github.com/Haiyang-W/RBGNet.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源