论文标题

在实数信号处理硬件上可以解决反问题

Inverse Problems Are Solvable on Real Number Signal Processing Hardware

论文作者

Boche, Holger, Fono, Adalbert, Kutyniok, Gitta

论文摘要

尽管深度学习成功(DL)严重的可靠性问题,例如非志愿性持续存在。一个有趣的方面是,这些问题是由于工具不足还是由于DL的基本限制而引起的。我们从可计算性的角度研究了这个问题,即我们表征了应用硬件施加的限制。为此,我们专注于反问题类别,特别是,这些问题涵盖了从测量结果重建数据的任何任务。在数字硬件上,实际上已经引发了关于解决有限维逆问题DL能力的概念障碍。本文研究了Blum-Shub-Sale(BSS)机器的一般计算框架,该框架允许处理和存储任意实际值。尽管目前尚不存在相应的现实世界计算设备,但近年来,“神经形态计算”一词通常提到的实际数量计算硬件的研究和开发已经有所增加。在这项工作中,我们表明BSS机器的框架确实可以实现有限维度反问题的算法解决性。我们的结果强调了所考虑的计算模型在准确性和可靠性问题中的影响。

Despite the success of Deep Learning (DL) serious reliability issues such as non-robustness persist. An interesting aspect is, whether these problems arise due to insufficient tools or due to fundamental limitations of DL. We study this question from the computability perspective, i.e., we characterize the limits imposed by the applied hardware. For this, we focus on the class of inverse problems, which, in particular, encompasses any task to reconstruct data from measurements. On digital hardware, a conceptual barrier on the capabilities of DL for solving finite-dimensional inverse problems has in fact already been derived. This paper investigates the general computation framework of Blum-Shub-Smale (BSS) machines which allows the processing and storage of arbitrary real values. Although a corresponding real world computing device does not exist at the moment, research and development towards real number computing hardware, usually referred to by the term "neuromorphic computing", has increased in recent years. In this work, we show that the framework of BSS machines does enable the algorithmic solvability of finite dimensional inverse problems. Our results emphasize the influence of the considered computing model in questions of accuracy and reliability.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源