论文标题

RL4REAL:登记分配的加固学习

RL4ReAl: Reinforcement Learning for Register Allocation

论文作者

VenkataKeerthy, S., Jain, Siddharth, Kundu, Anilava, Aggarwal, Rohit, Cohen, Albert, Upadrasta, Ramakrishna

论文摘要

我们的目标是使数十年的研究和经验自动化注册分配,利用机器学习。我们通过在LLVM中嵌入多代理增强学习算法来解决这个问题,并使用最先进的技术对其进行培训。我们将精确定义给定指令集架构的问题的约束形式化,同时确保生成的代码保持语义正确性。我们还开发了一个基于GRPC的框架,该框架提供了用于培训和推理的模块化和高效的编译器接口。我们的方法是独立的:我们显示针对Intel X86和ARM AARCH64的实验结果。我们的结果与LLVM的大量调整,生产级寄存器分配器相匹配或表现匹配。

We aim to automate decades of research and experience in register allocation, leveraging machine learning. We tackle this problem by embedding a multi-agent reinforcement learning algorithm within LLVM, training it with the state of the art techniques. We formalize the constraints that precisely define the problem for a given instruction-set architecture, while ensuring that the generated code preserves semantic correctness. We also develop a gRPC based framework providing a modular and efficient compiler interface for training and inference. Our approach is architecture independent: we show experimental results targeting Intel x86 and ARM AArch64. Our results match or out-perform the heavily tuned, production-grade register allocators of LLVM.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源