论文标题
来自非旋转,可比性至大质量比率黑洞二进制于黑洞扰动理论波形校准数值相对论的重力波信号的替代模型
Surrogate model for gravitational wave signals from non-spinning, comparable- to large-mass-ratio black hole binaries built on black hole perturbation theory waveforms calibrated to numerical relativity
论文作者
论文摘要
我们提出了来自非旋转二进制黑洞系统的重力波形的降低阶替代模型,该模型与大质量比率构型相当。该替代模型,\ texttt {bhptnrsur1dq1e4},对由点粒子黑洞扰动理论(PPBHPT)生成的波形数据进行了训练,质量比从2.5到10,000不等。 \ texttt {bhptnrsur1dq1e4}扩展了较早的波形模型,\ texttt {emrisur1dq1e4},使用更新的过渡到上的模型,涵盖更长的持续时间,更长的持续时间更长的持续时间,最高30,500 $ m_1 $(其中$ m_1 $ ins $ m_1 $ ins $ sp ins $ ables $ abos $ ables $ nofe $ $ nofe $ $ $ nofe $ nofe $ $ noffors $ nofe $)校准亚尺度模式为数值相对论(NR)数据。在可比的质量比率制度(包括低至2.5美元的质量比率)中,通过PPBHPT生成的重力波形在此简单校准步骤之后与NR的质量比非常吻合。我们还将我们的模型与最近的SXS和RIT NR模拟进行比较,质量比从$ 15 $到$ 32 $,并且发现主要的四极性模式同意优于$ \ $ \ 10^{ - 3} $。我们希望我们的模型在当前和将来的重力波探测器中研究中间质量比率二进制系统有用。
We present a reduced-order surrogate model of gravitational waveforms from non-spinning binary black hole systems with comparable to large mass-ratio configurations. This surrogate model, \texttt{BHPTNRSur1dq1e4}, is trained on waveform data generated by point-particle black hole perturbation theory (ppBHPT) with mass ratios varying from 2.5 to 10,000. \texttt{BHPTNRSur1dq1e4} extends an earlier waveform model, \texttt{EMRISur1dq1e4}, by using an updated transition-to-plunge model, covering longer durations up to 30,500 $m_1$ (where $m_1$ is the mass of the primary black hole), includes several more spherical harmonic modes up to $\ell=10$, and calibrates subdominant modes to numerical relativity (NR) data. In the comparable mass-ratio regime, including mass ratios as low as $2.5$, the gravitational waveforms generated through ppBHPT agree surprisingly well with those from NR after this simple calibration step. We also compare our model to recent SXS and RIT NR simulations at mass ratios ranging from $15$ to $32$, and find the dominant quadrupolar modes agree to better than $\approx 10^{-3}$. We expect our model to be useful to study intermediate-mass-ratio binary systems in current and future gravitational-wave detectors.