论文标题
降低电子磁流失动力学的模型:适应性和奇异性形成
Reduced models for electron magnetohydrodynamics: well-posedness and singularity formation
论文作者
论文摘要
我们提出了一些三维电子水力动力学的一维还原模型,该模型涉及具有复杂结构的高度非线性霍尔项。这些模型包含非本地非线性项。在某些情况下,可以获得当地的适应性。相反,对于具有非局部运输项的模型,我们表明某些初始数据可能会发生有限的时间奇点。
We propose some one-dimensional reduced models for the three-dimensional electron magnetohydrodynamics which involves a highly nonlinear Hall term with intricate structure. The models contain nonlocal nonlinear terms. Local well-posedness is obtained in certain circumstances. In contrast, for a model with nonlocal transport term, we show that finite time singularity may occur for some initial data.