论文标题
统一的隐式神经型
Unified Implicit Neural Stylization
论文作者
论文摘要
通过隐式表示(例如,基于坐标的深网)来表示视觉信号在许多视觉任务中都占了上风。这项工作探讨了一个新的有趣的方向:使用可以适用于各种2D和3D方案的广义方法训练风格化的隐式表示。我们对各种隐式函数进行了试点研究,包括基于2D坐标的表示,神经辐射场和签名距离函数。我们的解决方案是一个统一的隐式神经风化框架,称为ins。与Vanilla隐式表示相反,INS将普通隐式函数分解为样式隐式模块和内容隐式模块,以便从样式图像和输入场景中分别编码表示表示。然后,应用合并模块来汇总这些信息并合成样式化的输出。为了使3D场景中的几何形状进行正规化,我们提出了一种新颖的自我鉴定几何学一致性损失,该损失保留了风格化场景的几何忠诚度。全面的实验是在多个任务设置上进行的,包括对复杂场景的新型综合,隐式表面的风格化以及使用MLP拟合图像。我们进一步证明,学到的表示不仅是连续的,而且在风格上都是连续的,从而导致不同样式之间毫不费力地插值,并以新的混合样式生成图像。请参阅我们的项目页面上的视频以获取更多查看综合结果:https://zhiwenfan.github.io/ins。
Representing visual signals by implicit representation (e.g., a coordinate based deep network) has prevailed among many vision tasks. This work explores a new intriguing direction: training a stylized implicit representation, using a generalized approach that can apply to various 2D and 3D scenarios. We conduct a pilot study on a variety of implicit functions, including 2D coordinate-based representation, neural radiance field, and signed distance function. Our solution is a Unified Implicit Neural Stylization framework, dubbed INS. In contrary to vanilla implicit representation, INS decouples the ordinary implicit function into a style implicit module and a content implicit module, in order to separately encode the representations from the style image and input scenes. An amalgamation module is then applied to aggregate these information and synthesize the stylized output. To regularize the geometry in 3D scenes, we propose a novel self-distillation geometry consistency loss which preserves the geometry fidelity of the stylized scenes. Comprehensive experiments are conducted on multiple task settings, including novel view synthesis of complex scenes, stylization for implicit surfaces, and fitting images using MLPs. We further demonstrate that the learned representation is continuous not only spatially but also style-wise, leading to effortlessly interpolating between different styles and generating images with new mixed styles. Please refer to the video on our project page for more view synthesis results: https://zhiwenfan.github.io/INS.