论文标题

双方扩展器和应用程序中的在线匹配游戏

Online matching games in bipartite expanders and applications

论文作者

Bauwens, Bruno, Zimand, Marius

论文摘要

我们研究了两分图中的扩展与通过多个游戏建模的有效在线匹配之间的联系。在基本游戏中,对手切换{\ em on},{\ em off}节点在左侧,并且最多可能会打开$ k $节点。每次打开节点时,都必须与其一个邻居中的一个不可撤销地匹配。如果最多$ k $左节点的每一套$ s $ of $ k $,则两分之一的图表至少具有至少$ e \#s $ neighbors。如果所有左节点具有$ d $,$ e $接近$ d $,则该图是无损的扩展器。我们表明,无损扩展器允许在上述游戏中制定多项式时间策略,此外,通过稍作修改,它们允许在时间$ o(d \ log n)$中运行的策略,其中$ n $是左节点的数量。使用此游戏和一些相关变体,我们在数据结构和切换网络中得出应用程序。即,(a)动态集的1 Query Bitprobe存储方案(以前的方案仅适用于静态集),(b)明确的空间和时间效率的存储方案,用于静态和动态设置的静态和动态设置,具有非适应性访问的静态和动态设置,具有对内存的非适应性访问(使用非适应性探针使用,使用了几乎不适合启用不合格的空间),以及(c),以及(c) $ n $ -connectors带有poly $(\ log n)$的时间路径查找算法的算法,其大小在$ o(\ log n)$的倍以内(以前的连接器的双重指数较慢)。

We study connections between expansion in bipartite graphs and efficient online matching modeled via several games. In the basic game, an opponent switches {\em on} and {\em off} nodes on the left side and, at any moment, at most $K$ nodes may be on. Each time a node is switched on, it must be irrevocably matched with one of its neighbors. A bipartite graph has $e$-expansion up to $K$ if every set $S$ of at most $K$ left nodes has at least $e\#S$ neighbors. If all left nodes have degree $D$ and $e$ is close to $D$, then the graph is a lossless expander. We show that lossless expanders allow for a polynomial time strategy in the above game, and, furthermore, with a slight modification, they allow a strategy running in time $O(D \log N)$, where $N$ is the number of left nodes. Using this game and a few related variants, we derive applications in data structures and switching networks. Namely, (a) 1-query bitprobe storage schemes for dynamic sets (previous schemes work only for static sets),(b) explicit space- and time-efficient storage schemes for static and dynamic sets with non-adaptive access to memory (the first fully dynamic dictionary with non-adaptive probing using almost optimal space), and (c) non-explicit constant depth non-blocking $N$-connectors with poly$(\log N)$ time path finding algorithms whose size is optimal within a factor of $O(\log N)$ (previous connectors are double-exponentially slower).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源