论文标题

重量下统一结构域的共形转换取决于到边界的距离

Conformal transformation of uniform domains under weights that depend on distance to the boundary

论文作者

Gibara, Ryan, Shanmugalingam, Nageswari

论文摘要

球形化过程将欧几里得空间转换为紧凑的球体。在本说明中,我们提出了此过程的变体,以使用仅取决于仅取决于到达度量空间边界的距离的保形变形,以局部紧凑的路径连接,不完整的无界度量空间。该变形是局部Bi-Lipschitz到其边界附近的原始域,但将空间转换为有限的域。我们将证明,如果原始度量空间相对于其完成是统一的域,则转换的空间也是一个统一的域。

The sphericalization procedure converts a Euclidean space into a compact sphere. In this note we propose a variant of this procedure for locally compact, rectifiably path-connected, non-complete, unbounded metric spaces by using conformal deformations that depend only on the distance to the boundary of the metric space. This deformation is locally bi-Lipschitz to the original domain near its boundary, but transforms the space into a bounded domain. We will show that if the original metric space is a uniform domain with respect to its completion, then the transformed space is also a uniform domain.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源