论文标题
Dynatask:创建动态AI基准任务的框架
Dynatask: A Framework for Creating Dynamic AI Benchmark Tasks
论文作者
论文摘要
我们介绍了Dynatask:一个开源系统,用于设置自定义NLP任务,旨在大大降低托管和评估最先进的NLP模型所需的技术知识和精力,以及与CrowdWorkers在Loop数据收集中进行模型。 Dynatask与Dynabench集成在一起,Dynabench是一个研究平台,用于在AI中重新思考基准测试,以促进循环数据收集和评估中的人类和模型。要创建一个任务,用户只需要编写一个简短的任务配置文件,从中可以自动生成相关的Web界面和模型托管基础结构。该系统可在https://dynabench.org/上找到,可以在https://github.com/facebookresearch/dynabench上找到完整库。
We introduce Dynatask: an open source system for setting up custom NLP tasks that aims to greatly lower the technical knowledge and effort required for hosting and evaluating state-of-the-art NLP models, as well as for conducting model in the loop data collection with crowdworkers. Dynatask is integrated with Dynabench, a research platform for rethinking benchmarking in AI that facilitates human and model in the loop data collection and evaluation. To create a task, users only need to write a short task configuration file from which the relevant web interfaces and model hosting infrastructure are automatically generated. The system is available at https://dynabench.org/ and the full library can be found at https://github.com/facebookresearch/dynabench.