论文标题
张量完成,并为推荐系统提供可证明的一致性和公平性保证
Tensor Completion with Provable Consistency and Fairness Guarantees for Recommender Systems
论文作者
论文摘要
我们引入了一种基于一致性的新方法,用于定义和解决非负/阳性矩阵和张量的完成问题。该框架的新颖性是,我们没有以人为使问题的形式以一种应用 - 屈光优化问题的形式得到充分解决,例如,将诸如等级或规范等庞大的结构量度最小化,我们表明单个属性/约束:保存单位尺度的一致性,可以保证存在解决方案和相对较弱的支持假设。框架和解决方案算法还直接推广到任意维度的张量,同时保持固定维度d的问题大小线性的计算复杂性。在推荐系统(RS)应用程序的背景下,我们证明应对RS问题的任何解决方案都应持有两个合理的属性,足以允许在我们的框架内建立唯一性保证。这很了不起,因为它消除了对问题的核心似乎是人类/主观变量明显的人类/主观变量,但它消除了对基于启发式的统计方法或AI方法的需求。关键的理论贡献包括一个通用的单位一致的张张式 - 完整框架,并证明了其特性,例如共识和公平性,以及具有最佳的运行时和空间复杂性的算法,例如,O(1)o(1)术语完整且具有预处理的复杂性,该复杂性是在已知的Matrix/terrix/Tensorsor of Sensorsor of Sensorsor extrece necore necore necore comportition。从实际的角度来看,该框架的无缝能力是在关键状态变量之间利用高维结构关系的无缝能力,例如用户和产品属性,提供了一种用于提取更多信息的方法,而不是无法概括到直接用户产物关系以外的替代方法。
We introduce a new consistency-based approach for defining and solving nonnegative/positive matrix and tensor completion problems. The novelty of the framework is that instead of artificially making the problem well-posed in the form of an application-arbitrary optimization problem, e.g., minimizing a bulk structural measure such as rank or norm, we show that a single property/constraint: preserving unit-scale consistency, guarantees the existence of both a solution and, under relatively weak support assumptions, uniqueness. The framework and solution algorithms also generalize directly to tensors of arbitrary dimensions while maintaining computational complexity that is linear in problem size for fixed dimension d. In the context of recommender system (RS) applications, we prove that two reasonable properties that should be expected to hold for any solution to the RS problem are sufficient to permit uniqueness guarantees to be established within our framework. This is remarkable because it obviates the need for heuristic-based statistical or AI methods despite what appear to be distinctly human/subjective variables at the heart of the problem. Key theoretical contributions include a general unit-consistent tensor-completion framework with proofs of its properties, e.g., consensus-order and fairness, and algorithms with optimal runtime and space complexities, e.g., O(1) term-completion with preprocessing complexity that is linear in the number of known terms of the matrix/tensor. From a practical perspective, the seamless ability of the framework to generalize to exploit high-dimensional structural relationships among key state variables, e.g., user and product attributes, offers a means for extracting significantly more information than is possible for alternative methods that cannot generalize beyond direct user-product relationships.