论文标题

HIT-DVAE:通过分层变压器动力学的人类运动产生

HiT-DVAE: Human Motion Generation via Hierarchical Transformer Dynamical VAE

论文作者

Bie, Xiaoyu, Guo, Wen, Leglaive, Simon, Girin, Lauren, Moreno-Noguer, Francesc, Alameda-Pineda, Xavier

论文摘要

最近,关于3D人类姿势数据自动处理的研究在最近的过去蓬勃发展。在本文中,我们对观察到的3D姿势序列产生了合理和多样化的未来人类姿势。当前方法通过将从单个潜在空间的随机变量注入确定性运动预测框架来解决此问题,这排除了人类运动生成中固有的多模式。此外,先前的作品很少探索使用注意力以选择要使用哪些框架为生成过程提供信息。为了克服这些局限性,我们提出了层次变压器动力学变异自动编码器HIT-DVAE,该变化器可以通过类似变压器的注意机制实现自动回归产生。 HIT-DVAE同时学习了与时间相关的概率依赖性的数据和潜在空间分布的演变,从而使生成模型能够学习一个更复杂且时变的潜在空间以及多样化和现实的人类运动。此外,自动回归产生在观察和预测方面具有更大的灵活性,即可以具有任何观察长度,并预测具有单个预训练模型的任意大序列。我们通过各种评估方法评估了关于Humaneva-I和Human 3.6M的提议方法,并且在大多数指标上的最新方法都优于最先进的方法。

Studies on the automatic processing of 3D human pose data have flourished in the recent past. In this paper, we are interested in the generation of plausible and diverse future human poses following an observed 3D pose sequence. Current methods address this problem by injecting random variables from a single latent space into a deterministic motion prediction framework, which precludes the inherent multi-modality in human motion generation. In addition, previous works rarely explore the use of attention to select which frames are to be used to inform the generation process up to our knowledge. To overcome these limitations, we propose Hierarchical Transformer Dynamical Variational Autoencoder, HiT-DVAE, which implements auto-regressive generation with transformer-like attention mechanisms. HiT-DVAE simultaneously learns the evolution of data and latent space distribution with time correlated probabilistic dependencies, thus enabling the generative model to learn a more complex and time-varying latent space as well as diverse and realistic human motions. Furthermore, the auto-regressive generation brings more flexibility on observation and prediction, i.e. one can have any length of observation and predict arbitrary large sequences of poses with a single pre-trained model. We evaluate the proposed method on HumanEva-I and Human3.6M with various evaluation methods, and outperform the state-of-the-art methods on most of the metrics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源